首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the full set of power spectra of cosmic microwave background (CMB) temperature and polarization anisotropies due to the coupling between quintessence and pseudoscalar of electromagnetism. This coupling induces a rotation of the polarization plane of the CMB, thus resulting in a nonvanishing B mode and parity-violating TB and EB modes. Using the BOOMERANG data from the flight of 2003, we derive the most stringent constraint on the coupling strength. We find that in some cases the rotation-induced B mode can confuse the hunting for the gravitational lensing-induced B mode.  相似文献   

2.
We investigate the effects of a weak gravitational wave, modelled as a gaussian wavepacket, on the polarization state of an electromagnetic field enclosed in a cavity. Our approach is semiclassical, in that the electromagnetic field is described as a quantum field, while the gravitational perturbation is treated classically, as a slightly curved background spacetime. Assuming that before the interaction the electromagnetic field has been prepared in a given polarization state, we show that – due to the gravitational scattering with the wave – some photons having different polarization states are found in the cavity at late times. Such polarization scattering has some resemblance with Thomson scattering, well-known in Quantum Electrodynamics: hence the motivation for the title. We give a numerical estimate of the resulting photon polarization spreading in the case of a typical gravitational burst from a final supernova rebound. We also briefly comment about the possible influence of such gravitational scattering on the Cosmic Microwave Background (CMB) polarization.  相似文献   

3.
We revisit the constraints that the non-observation of ultra-high-energy photons due to the GZK cutoff can impose on models of Lorentz violation in photon propagation, following recent work by Maccione, Liberati and Sigl (2010) [arXiv:1003.5468] that carries further an earlier analysis by the present authors [J. Ellis et al., Phys. Rev. D 63 (2001) 12402, hep-th/0012216]. We argue that the GZK cutoff constraint is naturally evaded in the D-brane model of space–time foam presented recently by the present authors [J. Ellis et al., Phys. Lett. B 665 (2008) 412, arXiv:0804.3566], in which Lorentz-violating effects on photon propagation are independent of possible effects during interactions. We also note a novel absorption mechanism that could provide a GZK-like cutoff for photons in low-scale string models.  相似文献   

4.
This is an introductory review about the ongoing search for a signal of Lorentz Invariance Violation (LIV) in cosmic rays. We first summarise basic aspects of cosmic rays, focusing on rays of ultrahigh energy (UHECRs). We discuss the Greisen-Zatsepin-Kuz’min (GZK) energy cutoff for cosmic protons, which is predicted due to photopion production in the Cosmic Microwave Background (CMB). This is a process of modest energy in the proton rest frame. It can be investigated to a high precision in the laboratory, if Lorentz transformations apply even at factors γO(1011). For heavier nuclei, the energy attenuation is even faster due to photo-disintegration, again if this process is Lorentz invariant. Hence the viability of Lorentz symmetry up to tremendous γ-factors-far beyond accelerator tests-is a central issue.Next, we comment on conceptual aspects of Lorentz Invariance and the possibility of its spontaneous breaking. This could lead to slightly particle dependent “Maximal Attainable Velocities”. We discuss their effect in decays, ?erenkov radiation, the GZK cutoff and neutrino oscillation in cosmic rays.We also review the search for LIV in cosmic γ-rays. For multi-TeV γ-rays, we encounter another possible puzzle related to the transparency of the CMB, similar to the GZK cutoff, due to electron/positron creation and subsequent inverse Compton scattering. The photons emitted in a Gamma Ray Burst occur at lower energies, but their very long path provides access to information not that far from the Planck scale. We discuss conceivable nonlinear photon dispersions based on non-commutative geometry or effective approaches.No LIV has been observed so far. However, even extremely tiny LIV effects could change the predictions for cosmic ray physics drastically.An Appendix is devoted to the recent results by the Pierre Auger Collaboration, in particular the hypothesis that nearby Active Galactic Nuclei-or objects next to them-could be the UHECR sources.  相似文献   

5.
《Physics letters. A》2001,288(2):59-61
Based on a simple argument of relativistic covariance, I argue that the correlation between the polarization states of entangled photons, as predicted by quantum mechanics, is Lorentz invariant. Therefore, Bell's inequality for polarization states cannot be affected by the motion of detectors.  相似文献   

6.
We consider the effects of possible tachyonic perturbations of dark energy on the CMB anisotropy. Such perturbations emerge, in particular, in models with phantom dark energy violating Lorentz invariance. Therefore, we discuss tachyonic perturbations with a Lorentz-violating dispersion relation. We show that the corresponding contribution to the CMB anisotropy can have an appreciable amplitude, while the angular spectrum has a distinct maximum. These predictions are compared with observational data. The tachyonic contribution slightly improves the agreement between the theory and observations, but this improvement is statistically insignificant and our analysis gives constraints on the tachyonic perturbation amplitude.  相似文献   

7.
Baryon-density perturbations of large amplitude may exist if they are compensated by dark-matter perturbations such that the total density is unchanged. Primordial abundances and galaxy clusters allow these compensated isocurvature perturbations (CIPs) to have amplitudes as large as ~10%. CIPs will modulate the power spectrum of cosmic microwave background (CMB) fluctuations--those due to the usual adiabatic perturbations--as a function of position on the sky. This leads to correlations between different spherical-harmonic coefficients of the temperature and/or polarization maps, and induces polarization B modes. Here, the magnitude of these effects is calculated and techniques to measure them are introduced. While a CIP of this amplitude can be probed on large scales with existing data, forthcoming CMB experiments should improve the sensitivity to CIPs by at least an order of magnitude.  相似文献   

8.
Based on SU(2) Yang‐Mills thermodynamics we interprete Aracde2's and the results of earlier radio‐surveys on low‐frequency cosmic microwave background (CMB) line temperatures as a phase‐boundary effect. We explain the excess at low frequencies by evanescent, nonthermal photon fields of the CMB whose intensity is nulled by that of Planck distributed calibrator photons. The CMB baseline temperature thus is identified with the critical temperature of the deconfining‐preconfining transition.  相似文献   

9.
We study the nonlinear interaction of laser light with vacuum for a large angular aperture at electromagnetic field strengths far below the Schwinger limit. The polarization and magnetization in vacuum irradiated by a focused laser beam clearly differ from those in matter. This is due to the dependence on the Lorentz invariant, which results in a ring-shaped radiation distribution in vacuum. The number of the radiated photons increases nonlinearly with increasing angular aperture.  相似文献   

10.
We present a unified general formalism for ultraviolet Lorentz invariance violation (LV) testing through electromagnetic wave propagation, based on both dispersion and rotation measure data. This allows for a direct comparison of the efficacy of different data to constrain LV. As an example we study the signature of LV on the rotation of the polarization plane of γ-rays from gamma ray bursts in a LV model. Here γ-ray polarization data can provide a strong constraint on LV, 13 orders of magnitude more restrictive than a potential constraint from the rotation of the cosmic microwave background polarization proposed by Gamboa, López-Sarrión, and Polychronakos [J. Gamboa, J. López-Sarrión, A.P. Polychronakos, Phys. Lett. B 634 (2006) 471].  相似文献   

11.
The tension between the Hubble constant values obtained from local measurements and cosmic microwave background (CMB) measurements has motivated us to consider the cosmological model beyond ΛCDM. We investigate the cosmology in the large scale Lorentz violation model with a non-vanishing spatial curvature. The degeneracy among spatial curvature, cosmological constant, and cosmological contortion distribution makes the model viable in describing the known observational data. We obtain some constraints on the spatial curvature by comparing the relationship between measured distance modulus and red-shift with the predicted one, the evolution of matter density over time, and the evolution of effective cosmological constant. The implications of the large scale Lorentz violation model with the non-vanishing spatial curvature under these constrains are discussed.  相似文献   

12.
For the first time, measurements of the cosmic microwave background radiation (CMB) alone favor cosmologies with w = -1 dark energy over models without dark energy at a 3.2-sigma level. We demonstrate this by combining the CMB lensing deflection power spectrum from the Atacama Cosmology Telescope with temperature and polarization power spectra from the Wilkinson Microwave Anisotropy Probe. The lensing data break the geometric degeneracy of different cosmological models with similar CMB temperature power spectra. Our CMB-only measurement of the dark energy density Ω(Λ) confirms other measurements from supernovae, galaxy clusters, and baryon acoustic oscillations, and demonstrates the power of CMB lensing as a new cosmological tool.  相似文献   

13.
14.
Weak gravitational lensing has several important effects on the cosmic microwave background (CMB): it changes the CMB power spectra, induces non-Gaussianities, and generates a B-mode polarization signal that is an important source of confusion for the signal from primordial gravitational waves. The lensing signal can also be used to help constrain cosmological parameters and lensing mass distributions. We review the origin and calculation of these effects. Topics include: lensing in General Relativity, the lensing potential, lensed temperature and polarization power spectra, implications for constraining inflation, non-Gaussian structure, reconstruction of the lensing potential, delensing, sky curvature corrections, simulations, cosmological parameter estimation, cluster mass reconstruction, and moving lenses/dipole lensing.  相似文献   

15.
We propose a new method for removing gravitational lensing from maps of cosmic microwave background (CMB) polarization anisotropies. Using observations of anisotropies or structures in the cosmic 21 cm radiation, emitted or absorbed by neutral hydrogen atoms at redshifts 10 to 200, the CMB can be delensed. We find this method could allow CMB experiments to have increased sensitivity to a background of inflationary gravitational waves (IGWs) compared to methods relying on the CMB alone and may constrain models of inflation which were heretofore considered to have undetectable IGW amplitudes.  相似文献   

16.
魏文叶  申佳音  吴奕暐  杨礼想  薛迅  阮自强 《物理学报》2017,66(13):130301-130301
微波背景辐射的低l极矩的各向异性可能不能用微波背景辐射静止系boost到本动参考系来解释,我们推断boost对称性在宇宙学尺度上缺失,又由于单纯结合广义相对论和物质结构的标准模型不能解释星系以上尺度的引力现象,需要引入暗物质和暗能量.而迄今为止所有寻找暗物质粒子的实验给出的都是否定结果,暗能量的本质更是一个谜.因此,我们假设洛伦兹对称性是从星系以上尺度开始部分破缺,以非常狭义相对论对称群E(2)为例,用E(2)规范理论来构造大尺度有效引力理论,并分析了此规范理论的自洽性.从这些讨论中发现,当物质源即使为普通标量物质时,contortion也一般非零,非零contortion的存在会贡献一个等效能量动量张量的分布,它可能对暗物质效应给出至少部分的贡献.我们从对称性出发修改引力,有别于其他的修改引力理论.  相似文献   

17.
范祖辉 《物理》2005,34(04):240-245
文章对微波背景辐射的各向异性、偏振及宇宙电离的历史给出了评述性介绍.从大爆炸理论的预言,到观测的发现,到其各向异性及偏振的探测,微波背景辐射(CMB)向人们揭示了丰富的宇宙学信息.文章在对基本理论作了简单介绍后,着重讲述了最新的CMB的观测结果及其物理意义.特别对微波背景各向异性探测器(Wilkinson Microwave Anisotropy Probe, WMAP)的偏振观测及其对宇宙重新电离的限制给出了较详细的叙述.  相似文献   

18.
We study signatures of cosmic superstring networks containing strings of multiple tensions and Y junctions, on the cosmic microwave background (CMB) temperature and polarization spectra. Focusing on the crucial role of the string coupling constant g(s), we show that the number density and energy density of the scaling network are dominated by different types of string in the g(s) ~ 1 and g(s) ? 1 limits. This can lead to an observable shift in the position of the B-mode peak--a distinct signal leading to a direct constraint on g(s). We forecast the joint bounds on g(s) and the fundamental string tension μ(F) from upcoming and future CMB polarization experiments, as well as the signal to noise in detecting the difference between B-mode signals in the limiting cases of large and small g(s). We show that such a detectable shift is within reach of planned experiments.  相似文献   

19.
范祖辉 《物理》2005,34(4):240-245
文章对微波背景辐射的各向异性、偏振及宇宙电离的历史给出了评述性介绍.从大爆炸理论的预言,到观测的发现,到其各向异性及偏振的探测,微波背景辐射(CMB)向人们揭示了丰富的宇宙学信息.文章在对基本理论作了简单介绍后,着重讲述了最新的CMB的观测结果及其物理意义.特别对微波背景各向异性探测器(Wilkinson Microwave Anisotropy Probe,WMAP)的偏振观测及其对宇宙重新电离的限制给出了较详细的叙述.  相似文献   

20.
This review is devoted to problems of defining the reference frames in the tetrad formalism of General Relativity. Tetrads are the expansion coefficients of components of an orthogonal basis over the differentials of a coordinate space. The Hamiltonian cosmological perturbation theory is presented in terms of these invariant differential forms. This theory does not contain the double counting of the spatial metric determinant in contrast to the conventional Lifshits-Bardeen perturbation theory. We explicitly write out the Lorentz transformations of the orthogonal-basis components from the cosmic microwave background (CMB) reference frame to the laboratory frame, moving with a constant velocity relative to the CMB frame. Possible observational consequences of the Hamiltonian cosmological perturbation theory are discussed, in particular, the quantum anomaly of geometric interval and the shift of the origin, as a source of the CMB anisotropy, in the course of the universe evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号