首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The polarized Raman spectra of Nd1+xBa2−xCu3O7−δ (−0.023≤x≤0.107) and Pr1+xBa2−xCu3O7−δ (0.01≤x≤0.15) single crystals have been investigated. It was found that the Cu(2) Ag mode softens by 6 cm−1 in Nd 1:2:3 and 4 cm−1 in Pr 1:2:3 as x increases. These frequency shifts cannot be explained by the change in the relevant bond lengths due to Nd(Pr)-substitution for Ba. The variations with x of the two low frequency modes may be affected by change of their hybridization and/or change of their force constants. The linewidths of Ba mode in Pr 1:2:3 are broader than those in Y 1:2:3. This result suggests that the Pr substitution on Ba sites occurred even in a very small value of x. In x(yy) geometry the relative intensity of the Ba and O(4) modes in Nd 1:2:3 is greater than those in Pr 1:2:3. The difference between Nd 1:2:3 and Pr 1:2:3 in the relative intensity of the Ba and O(4) modes may be produced by the chains.  相似文献   

2.
Dielectric and pyroelectric properties of the mixed crystals system, (CH3NH3)5Bi2(1 − x)Sb2xCl11 (0 < x < 0.25) were systematically investigated. Temperature dependencies of ′c in the vicinity of ferro-paraelectric phase transition were measured for the mixed crystals with x = 0.05, 0.07, 0.11, 0.13 and 0.25 in the frequency region 1 kHz–1 MHz. The substitution of bismuth atoms by antimony drastically reduces the magnitude of ′c and shifts the ferro-paraelectric phase transition towards higher temperatures. The dielectric dispersion of the complex electric permittivity, c*, in x = 0.05 crystals was studied in the frequency range from 30 to 1000 MHz. Around 321 K phase transition, two dielectric relaxators are postulated; a low-frequency one in the megahertz region showing a critical slowing down and a high-frequency one in the gigahertz region.  相似文献   

3.
New Scheelite-related solid solutions of the compositions Nax/2Bi1−x/2MoxV1−xO4 (0≤x≤1) and Bi1−x/3 MoxV1−xO4(0≤x≤0.2) have been synthesised by the substitution of Na and Mo at the A and B sites respectively of the ABO4 type ferroelastic BiVO4. The phases were characterised using chemical analysis, powder X-ray diffraction, scanning electron microscopy, EDAX, and Raman spectroscopy. While almost a continuous solid solution is obtained for the series Nax/2Bi1−x/2MoxV1−xO4, the absence of Na at the A-site results only in a narrow stability region for the other series, Bi1−x/3 MoxV1−xO4 where 0≤x≤0.2. Raman spectra of selected samples at room temperature also suggest that vanadium and molybdenum atoms are disordered at the tetrahedral sites.  相似文献   

4.
Pr concentration dependence of the superconducting transition temperature Tc in the Ho1−xPrxBa2Cu3O7−δ system is determined from measurements of DC electrical resistance. This dependence coincides with that for the parallely studied Y1−xPrxBa2Cu3O7−δ reference system. Both systems have the same value of the critical concentration xc=0.58, in accordance with nearly equal ionic radii of Ho3+ and Y3+ ions. It has been shown that the Tc(x) curve can be described with a single mechanism based on a decreasing number of sheet holes trapped by PrIV-ions, if one takes also into account that the number of these ions changes with x.  相似文献   

5.
Superconductivity and crystallographic properties of La2 − xMxCuO4 − δ (M = Na, K) are studied. In the La2 − xMxCuO4 − δ system, superconductivity is detected for x 0.2. Oxygen content analysis shows that the system has more oxygen vacancies than the La2 − xSrxCuO4 − δ system. These oxygen vacancies may reduce the hole concentration, and high Na-doping is needed to produce superconductivity. In the La2 − xKxCuO4 − δ system, superconductivity is observed for the first time. Resistivity and magnetic susceptibility measurements show that Tc(onset) is 40 K and the Meissner volume fraction is about 4% for x = 0.7. The system changes from orthorhombic to a tetragonal K2NiF4 structure at x ≈ 0.3 and only tetragonal samples show superconductivity.  相似文献   

6.
Oxygen tracer diffusion (D*) and surface exchange rate constant (k*) have been measured, using isotopic exchange and depth profiling by secondary ion mass spectrometry (SIMS), in La1−xSrxFe0.8Cr0.2O3−δ (x=0.2, 0.4 and 0.6). Measurements were made as a function of temperature (700–1000 °C) and oxygen partial pressure (0.21–10−21 atm) in dry oxygen, water vapour and water vapour/hydrogen/nitrogen mixtures. At high oxygen activity, D* was found to increase with increasing temperature and Sr content. The activation energies for D* in air are 2.13 eV (x=0.2), 1.53 eV (x=0.4) and 1.21 eV (x=0.6). As the oxygen activity decreases, D* increases as expected qualitatively from the increase in oxygen vacancy concentration. Under strongly reducing conditions, the measured values of D* at 1000 °C range from 10−8 cm2 s−1 for x=0.2 to 10−7 cm2 s−1 for x=0.4 and 0.6. The activation energies determined at constant H2O/H2 ratio are 1.21 eV (x=0.2), 1.59 eV (x=0.4) and 0.82 eV (x=0.6).

The surface exchange rate constant of oxygen for the H2O molecule is similar in magnitude to that for the O2 molecule and both increase with increasing Sr concentration.  相似文献   


7.
The equilibrium oxygen content as a function of the temperature and oxygen pressure was measured for the solid solution YBa2Cu3−xCoxO6+δ, where x=0, 0.2, 0.4, 0.6, 0.8, by using coulometric titration in the temperature range 600–850°C and oxygen pressures between 10−5 and 1.0 atm. The change in the partial molar enthalpy and entropy of the intercalated oxygen was determined at different oxygen and cobalt contents. The oxygen chemical diffusion was studied by thermogravimetric relaxation in the oxygen-controlled atmosphere. The thermodynamic data were employed to determine how the chemical diffusion coefficient, the thermodynamic factor and the random-diffusion coefficient depend on oxygen content in specimens with different cobalt concentration. The oxygen intercalation thermodynamics and diffusivity results provide evidence of ordering phenomena on a microscopic scale in the basal plane of the tetragonal solid solution YBa2Cu3−xCoxO6+δ. A model for the oxygen diffusion is suggested to explain the large difference between the random and tracer diffusion coefficients in YBa2Cu3O6+δ  相似文献   

8.
Superconductivity in polycrystalline YBa2AlxCu(3−x)O7−δ materials was characterized by dynamic AC and quasistatic DC magnetometry. Intragranular persistent current density and low-loss intergranular critical current density were deduced using DC and AC techniques, respectively. Addition of aluminum produced modest increases in the intragranular persistent current for x < 0.2, but drastically reduced the intergranular critical current density for x = 0.2. The critical temperature Tc for superconductivity decreased only 4% for Al content up to x = 0.2.  相似文献   

9.
Magnetic characteristics of Ti-, Zr- and Hf-substituted PrCo5 alloys have been studied over the temperature range from 77 to 300 K and for applied fields up to 20 kOe. It is established that Ti, Zr and Hf substitute for Pr. Single-phase materials are formed for all values of x up to 0.2 in the system Pr1−xZrxCo5 but for x only up to 0.1 for Pr1−xTix Co5 and Pr1−xHfxCo5 alloys. Larger amounts of Zr can be substituted if the material is made hyperstoichiometric in Co, e.g., Pr0.7Zr0.3Co5.5. All the alloys show a decrease in magnetic moment and an increase in Curie temperature as x increases. Anisotropy fields decrease as x increases at 295 K. Anomalous behavior is observed at 77 K, suggested that these ternary alloys may have a cone structure at this temperature.  相似文献   

10.
Cation deficient spinels NixMn3−x3δ/4O4+δ (0≤x≤1) have been prepared by thermal decomposition of mixed oxalates Nix/3Mn(3−x)/3(C2O4nH2O in air at 623 K. They have been characterised by temperature programmed reduction (TPR) under H2, the reaction being followed by gravimetric and powder X-ray diffraction measurements. It has been shown that TPR proceeds in several steps. The first steps correspond to the loss of nonstoichiometric oxygen leading to the formation of a stoichiometric oxide. During the following stages the manganese cations are reduced, causing the spinel structure to be destroyed, and the formation of solid solution of NiO in a cubic MnO. Subsequently, Ni2+ cations undergo a reduction to metallic nickel, and, finally, a mixture of nonstoichiometric MnO1−δ and metallic nickel is formed. These oxides contain a high level of vacancies which vary with the nickel content with a maximum of δ≈1 near x=0.6. This nonstoichiometry is ascribed both to the presence of Ni3+ and excess of Mn4+.  相似文献   

11.
The effect of Bi-substitution on the dielectric properties of yttrium iron garnet (YIG) was studied in this paper. The Bi-substituted YIG (YIG:Bi) polycrystalline samples, having composition of Y3−xBixFe5O12, were prepared by the solid-state reaction method. x varied from 0 to 1.2. The phase formation and microstructure were performed by X-ray diffraction and scanning electron microscopy, respectively. Ions valency was identified by X-ray photoelectron spectroscopy. The impedance analyzers are used to measure the frequency dependence and the temperature dependence of relative dielectric constant (r) and loss tangent (tan δ). The experimental results show that the Bi-substitution lowers the phase formation and sintering temperature. Electronic carrier concentration drops dramatically due to limitation of ferric valency variation. Hence, r and tan δ decrease with addition of Bi. Dispersion characteristic indicates non-Debye-type dispersion. A maximum of r appears as the temperature rises.  相似文献   

12.
Magnetoelectric composites, namely, xNiFe2O4+(1−x)Ba0.9Sr0.1TiO3 were prepared by standard double sintering ceramic method. The X-ray diffraction analysis was carried out to check the phases formed during sintering and to calculate the lattice parameters. Scanning electron microscope (SEM) micrographs were taken to understand the microstructure of the samples. The dielectric constant (ε′) and loss tangent (tan δ) were measured as a function of frequency in the frequency range 100 Hz–1 MHz. Variation of dielectric constant and loss tangent with temperature and composition has been reported. The hysteresis measurements were done to determine saturation magnetization (MS) and coersivity (Hc). The variation of saturation magnetization and magnetic moment is interpreted in terms of composition.  相似文献   

13.
Formation of the La2Cu1−xCoxO4+δ solid solutions with orthorhombic K2NiF4-type structure was found to be in the range of 0≤x≤0.30 at temperatures above 1270 K. Incorporating cobalt into the copper sublattice of lanthanum cuprate leads to increasing oxygen hyperstoichiometry and decreasing electrical conductivity. Thermal expansion coefficients of the La2Cu1−xCoxO4+δ (x=0.02–0.30) ceramics at 470–1100 K were calculated from the dilatometric data to vary in the range (12.2–13.2)×106 K1. Studying the dependence of oxygen permeation fluxes through La2Cu(Co)O4+δ on the membrane thickness demonstrated that the oxygen transport at the thickness values below 1 mm is limited by both surface exchange rate and bulk ionic conductivity. Oxygen permeability of the La2Cu1−xCoxO4+δ solid solutions was ascertained to increase with cobalt concentration at x=0.02–0.10 and to decrease with further dopant additions, indicating a participation of interstitial oxygen in the ionic transport.  相似文献   

14.
A new lithium ionic conductor of the thio-LISICON (LIthium SuperIonic CONductor) family was found in the binary Li2S–P2S5 system; the new solid solution with the composition range 0.0≤x≤0.27 in Li3+5xP1−xS4 was synthesized at 700 °C and characterized by X-ray diffraction measurements. Its electrical and electrochemical properties were studied by ac impedance and cyclic voltammetry measurements, respectively. The solid solution member at x=0.065 in Li3+5xP1−xS4 showed the highest conductivity value of 1.5×10−4 S cm−1 at 27 °C with negligible electronic conductivity and the activation energy of 22 kJ mol−1 which is characteristic of high ionic conduction state. The extra lithium ions in Li3PS4 created by partial substitution of P5+ for Li+ led to the large increase in ionic conductivity. In the solid solution range examined, the minimum conductivity was obtained for the compositions, Li3PS4 (x=0.0 in Li3+5xP1−xS4) and Li4P0.8S4 (x=0.2 in Li3+5xP1−xS4); this conductivity behavior is similar to other thio-LISICON family with the general formula, LixM1−yMy′S4 (M=Si, Ge, and M′=P, Al, Zn, Ga, Sb). Conduction mechanism and the material design concepts are discussed based on the conduction behavior and the structure considerations.  相似文献   

15.
The specific heats of Sm1+xBa2−xCu3Oy solid solution of orthorhombic and tetragonal structure were measured in the temperature range 80–300 K. The data were analyzed in the framework of the Debye model with dilatation correction. The tendency to lower the high-temperature limit of the Debye temperature, θHTD, with the oxygen deficiency was noticed. In contrast, the increase of Sm substitution causes a rise of θHTD. The temperature dependence θD(T) was calculated for each compound from the series for the whole temperature region investigated.  相似文献   

16.
The maximum solid solubility of gallium in the perovskite-type La1−xSrxFe1−yGayO3−δ (x=0.40–0.80; y=0–0.60) was found to vary in the approximate range y=0.25–0.45, decreasing when x increases. Crystal lattice of the perovskite phases, formed in atmospheric air, was studied by X-ray diffraction (XRD) and neutron diffraction and identified as cubic. Doping with Ga results in increasing unit cell volume, while the thermal expansion and total conductivity of (La,Sr)(Fe,Ga)O3−δ in air decrease with gallium additions. The average thermal expansion coefficients (TECs) are in the range (11.7–16.0)×10−6 K−1 at 300–800 K and (19.3–26.7)×10−6 K−1 at 800–1100 K. At oxygen partial pressures close to atmospheric air, the oxygen permeation fluxes through La1−xSrxFe1−yGayO3−δ (x=0.7–0.8; y=0.2–0.4) membranes are determined by the bulk ambipolar conductivity; the limiting effect of the oxygen surface exchange was found negligible. Decreasing strontium and gallium concentrations leads to a greater role of the exchange processes. As for many other perovskite systems, the oxygen ionic conductivity of La1−xSrxFe1−yGayO3−δ increases with strontium content up to x=0.70 and decreases on further doping, probably due to association of oxygen vacancies. Incorporation of moderate amounts of gallium into the B sublattice results in increasing structural disorder, higher ionic conductivity at temperatures below 1170 K, and lower activation energy for the ionic transport.  相似文献   

17.
By making use of high-temperature series expansions (HTSE) of the correlation functions, we study the thermal and disorder variation of the short-range order (SRO) in the particular B-spinel ZnCr2xAl2−2xS4. We developed the HTSE for the q-dependent static structure factor S(q) to the order 6 in reciprocal temperature including both the nearest- and next-nearest-neighbour interactions J1 and J2, respectively. Respecting the experimental fact that the broad diffuse peak of the neutron is situated at the particular wave vector q0=[0 0 0.79] and is insensitive to the temperature for a given ratio of dilution x, we have estimated the thermal variation of J1 and J2 in the case of the pure compound.

The bond percolation threshold xp of the ZnCr2xAl2−2xS4 is determined by studying the disorder variation of the correlation length ξ. The xp is considered as the concentration at which ξ vanishes. The obtained values are xp=0.27 when only J1 is considered and 0.23 when both J1 and J2 are taken into account.  相似文献   


18.
Structure and magnetic properties of the Zr1−xMnxCo2+δ alloys were studied for 0 x <0.7, δ=0, 0.45. The cubic C15 Laves phase structure shows Mn solubility up to x≈0.4. The other Laves phase with the hexagonal C36 structure found for x0.5 apparently has a small region of Mn solubility in the vicinity of Zr0.4Mn0.6Co2. Though the parent Mn-free compounds are known to be paramagnetic, the Mn-substituted alloys show ferromagnetic behavior with the Curie temperatures up to 625 K and the room-temperature saturation magnetization of about 100 emu/g. The onset of ferromagnetism with the Mn substitution for Zr may be caused by polarization of itinerant 3d electrons, like it was earlier supposed for the off-stoichiometric ZrCo2+δ. The universal composition dependencies of the intrinsic magnetic properties for different δ can be obtained, if plotted against the amount of zirconium atoms missing in its sublattice. The room-temperature anisotropy with the noticeable anisotropy field of 24 kOe and the 1 1 0 easy magnetization direction laying in a basal plane was found in the hexagonal Zr0.5Mn0.5Co2.  相似文献   

19.
Pr substituted at constant Ca concentration for Y in (Y1−xyPrxCay)Ba2Cu3O7−δ superconductors have been prepared under identical conditions and the temperature dependence of the electrical resistivity of these samples are measured. The resistively determined values of Tc decrease linearly with increasing x (0 ≤ x ≤ 0.2) for constant y = 0.10 and 0.15 which provides convincing evidence that the suppression of superconductivity by Pr is mainly due to magnetic pair breaking. The suppression of superconductivity can also be correlated to the observed changes in oxygen content determined by iodometric analysis and to the average Cu-valences. However, it is found that the observed suppression of Tc cannot be compensated by appropriate hole doping with Ca.  相似文献   

20.
V1−xCrxSe(0.05x0.83) shows a temperature dependence of the magnetic susceptibility χ which is similar to that of CrSe. At small x, the magnetic transition temperature Tt(x) and the Weiss constant θp(x) decrease with decreasing x, while the effective number of Bohr magnetons per Cr (Peff) significantly increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号