首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Liu SY  Hu CQ 《Analytica chimica acta》2007,602(1):114-121
This study introduces the general method of quantitative nuclear magnetic resonance (qNMR) for the calibration of reference standards of macrolide antibiotics. Several qNMR experimental conditions were optimized including delay, which is an important parameter of quantification. Three kinds of macrolide antibiotics were used to validate the accuracy of the qNMR method by comparison with the results obtained by the high performance liquid chromatography (HPLC) method. The purities of five common reference standards of macrolide antibiotics were measured by the 1H qNMR method and the mass balance method, respectively. The analysis results of the two methods were compared. The qNMR is quick and simple to use. In a new medicine research and development process, qNMR provides a new and reliable method for purity analysis of the reference standard.  相似文献   

2.
Quantitative Nuclear Magnetic Resonance (qNMR) is a reliable quantitative spectroscopic technique, wherein the intensity of a resonance line is directly proportional to the number of resonant nucleus, and the absolute content of the compound can be determined, this means the inorganic stabilizer in the sample would not affect the result of qNMR. High performance liquid chromatography (HPLC) is a common analytical method with a high separation capacity. This study combined HPLC and qNMR, to measure the purity of Human Insulin (HI). It started from an original HI. The first step is purifying the original HI by HPLC to get a purified HI, with organic purity of 99.78%. The second step is assessing the absolute content of the purified HI by qNMR, and got 40.25%. The third step is measuring the purity of original HI by HPLC again, using the purified HI as the reference material. This method, called HPLC-qNMR-HPLC, is more accurate (84.12%?±?1.14%) than the traditional IDMS (isotope dilution mass spectrometry) method (86.6%?±?3.4%). This study expanded the application of qNMR to proteins with molecular weight of about 5800, and showed that this method can be widely used in measuring the purity of macromolecular proteins.  相似文献   

3.
An analytical method using solvent extraction and quantitative proton nuclear magnetic resonance (qHNMR) spectroscopy was applied and validated for the absolute quantification of sorbic acid (SA) in processed foods. The proposed method showed good linearity. The recoveries for samples spiked at the maximum usage level specified for food in Japan and at 0.13 g kg−1 (beverage: 0.013 g kg−1) were larger than 80%, whereas those for samples spiked at 0.063 g kg−1 (beverage: 0.0063 g kg−1) were between 56.9 and 83.5%. The limit of quantification was 0.063 g kg−1 for foods (and 0.0063 g kg−1 for beverages containing Lactobacillus species). Analysis of the SA content of commercial processed foods revealed quantities equal to or greater than those measured using conventional steam-distillation extraction and high-performance liquid chromatography quantification. The proposed method was rapid, simple, accurate, and precise, and provided International System of Units traceability without the need for authentic analyte standards. It could therefore be used as an alternative to the quantification of SA in processed foods using conventional method.  相似文献   

4.
High-resolution nuclear magnetic resonance (NMR) spectroscopy is an indispensable technique for obtaining chemical structure information. Its quantitative and noninvasive properties have led to its growing popularity as an analytical tool in many fields, including biology, chemistry, medicine, and food science. During transportation and storage, chemical reactions among the many nutrients lead to a loss of food quality. In these circumstances, portable NMR spectrometers can readily be used for food inspection and quality control. Because of the heterogeneous tissue distribution in food, a high-resolution NMR method is required for detailed food inspection. Therefore, in this study, we demonstrated the feasibility of using an intermolecular double-quantum coherence signal to obtain high-resolution metabolic profiles of several fruits, including grape, cantaloupe, tomato, and watermelon. The resulting high-resolution NMR spectra facilitate the identification of important metabolites, which can be used as biomarkers for food quality control. The method established here may be adapted for food inspection using portable NMR equipment.  相似文献   

5.
Isotope-dilution mass spectrometry (IDMS) is considered to be a method without significant correction factors. It is also believed that this method is well understood. But unfortunately a large number of different uncertainty budgets have been published that consider different correction factors. These differences lead to conflicting combined uncertainties especially in trace analysis. It is described how the known correction factors must be considered in the uncertainty budget of values determined by IDMS combined with ICP-MS (ICP-IDMS). The corrections applied are dead time, background, interference, mass discrimination, blank correction and air buoyancy.IDMS measurements consist always of a series of isotope abundance ratio measurements and can be done according to different measurement protocols. Because the measurement protocols of IDMS are often rather sophisticated, correlations of influence quantities are difficult to identify. Therefore the measurement protocol has to be carefully considered in the specification of the measurand and a strategy is presented to properly account for these correlations. This will be exemplified for the estimation of mass fractions of platinum group elements (PGEs) and Re in the geological reference material UB-N (from CRPG-CNRS, Nancy in France) with ICP-IDMS. The PGEs with more than one isotope and the element Re are measured with on-line cation-exchange chromatography coupled to a quadrupole ICP-MS. All contents are below 10 µg kg–1. Only osmium is separated from the matrix by direct sparging of OsO4 into the plasma. This leads to transient signals for all PGEs and Re. It is possible to estimate the combined uncertainties and keep them favourably small despite the low contents, the transient signals and the sophisticated correction model.  相似文献   

6.
Trichlorfon is an organophosphorus insecticide, which is extensively being used for protection of fruit crops. Trichlorfon is a thermal labile compound, which cannot be easily determined by gas chromatography (GC) and has no suitable group for sensitive detection by high performance liquid chromatography (HPLC). In this study, a 31P nuclear magnetic resonance (31P NMR) has been described for monitoring of trichlorfon without any separation step. The quantitative works of 31P NMR spectroscopy has been performed in the presence of an internal standard (hexamethylphosphoramide). Limit of detection (LOD) for this method has been found to be 55 mg L−1, without any sample preparation, and the linear working range was 150-5500 mg L−1. Relative standard deviation (R.S.D.%) of the method for three replicates within and between days was obtained ≤9%. The average recovery efficiency was approximately 99-112%. This method was applied for monitoring trichlorfon in a commercial insecticide sample and tomato sample.  相似文献   

7.
The procedure for identifying triterpenes in mixtures is based on the simulation of 13C-NMR spectra for probable mixtures and comparison of these with a specialized spectral data bank. The system was designed to facilitate the analysis of complex mixtures of terpenoid compounds. A special matching procedure was developed and its efficiency is discussed. The method is demonstrated for a mixture of five triterpenes isolated from Vernonia cognata.  相似文献   

8.
利用ICP-MS测定高纯铝中杂质。用建立数学模型的方法对结果的不确定度进行评估和计算。对试料的称重、标准溶液的配制、工作曲线的拟合、测量重复性的各分量不确定度进行分析。得到了各分量不确定度和合成不确定度,最终得出更加客观的结果。  相似文献   

9.
Rhizoma coptidis, a broadly used traditional Chinese medicine, derives from the dried rhizomes of Coptis chinensis Franch, Coptis deltoidea C.Y. Cheng et Hsiao and Coptis teeta Wall. Quantitative determination of protoberberine alkaloids in R. coptidis is critical for controlling its quality. In this study, a rapid, simple and accurate quantitative 1H NMR (qNMR) method was developed for simultaneous determination of berberine, jatrorrhizine, epiberberine, coptisine, palmatine and columbamine in R. coptidis from the three species. Method validation was performed in terms of selectivity, precision, repeatability, stability, accuracy, robustness and linearity. The average recoveries obtained were in the range of 96.9–102.4% for all the six alkaloids. In addition, the qNMR data were analyzed with analysis of variance (ANOVA), hierarchical clustering analysis (HCA) and principal component analysis (PCA), and the results showed that the contents of the active alkaloids have significant difference among the three species. Compared with the conventional HPLC approach, the proposed qNMR method was demonstrated to be a powerful tool for quantifying the six alkaloids due to its unique advantages of high robustness, rapid analysis time and no need of standard compounds for calibration curves preparation. These findings indicate that this method has potential as a reliable method for quality evaluation of herb medicines, especially for protoberberine alkaloid-containing ones.  相似文献   

10.
Structural changes caused by heating of fossilized (amber) and semifossilized (copal) resins have been examined by nuclear magnetic resonance spectroscopy. A set of 28 samples was constituted to include different geographical sources, degrees of maturation, colors, and structural groupings. The onset of structural alterations was determined by observation of the lowest temperature at which spectral changes occurred. Both proton spectra in solution and carbon-13? spectra in the solid state then were recorded of cooled samples after heating for 12 hr at temperature increments, until liquification of the sample began. The spectra of both nuclides exhibit loss of a few peaks, broadening of most peaks, and enhancement of the unsaturated or aromatic region at the expense of saturated resonances. Such changes are irreversible and lead to a harder and less soluble material on cooling. The changes parallel those that occur with maturation of fossil resins or materials that lead to coal.  相似文献   

11.
Crude oil distillates are a highly useful industrial product, mainly for energy generation. Unfortunately, they are rarely studied, mainly due to the low accessibility to products directly obtained from the distillation process, which is a laborious, expensive, and time-consuming operation. This work presents and discusses the use of time-domain nuclear magnetic resonance (TD-NMR) as a simple, affordable, and straightforward tool for the development of correlations supported on the transverse relaxation time (T2) and boiling temperature. The results point out a high convergence between TD-NMR experimental data and the ASTM D2892 method for distillates from light, medium, and heavy oils, with up to 52.20% of accumulated mass and boiling point temperature (Tb) up to 400°C. Furthermore, an unprecedented relationship between T2 values and the accumulated mass of the distillates is first demonstrated. This new insight opens new perspectives for future prediction of accumulated mass for unknown crude oils, placing the TD-NMR relaxometry as an appeal spectroscopy approach with a potential to meaningfully contribute to the daily refining petrochemical industry field operations.  相似文献   

12.
Quantitative nuclear magnetic resonance (qNMR) was used for the purity determination of neat compounds of persistent organic pollutants (POPs). qNMR is a unique quantitative method that is not only traceable to the International System of Units (SI), but it also does not require a standard of its own. The purities of the POP compounds determined in this work were traceable to a single certified reference material (CRM), which is extremely attractive for reference material producers. The purities observed by qNMR were equivalent to those observed by gas chromatography with flame ionization detection (GC/FID) or a differential scanning calorimetry (DSC) combined with a thermogravimetric analyzer (TGA). The uncertainties obtained by the qNMR method were comparable to being slightly larger than those observed by DSC.  相似文献   

13.
The measurement uncertainty in the calculation of the amount of blocked and reactive lysine (as determined by the furosine method) was evaluated according to the procedure described in the Eurachem/CITAC guide. The analytical method involves the chromatographic determination of lysine and furosine after acid hydrolysis. The calculation of blocked and reactive lysine in the initial protein is based on known conversion factors. The estimation of the uncertainty was performed in two steps: (1) determination of the uncertainty in the chromatographic determination of lysine and furosine, and (2) determination of the uncertainty in the calculation of blocked and reactive lysine. The individual contributions to the final uncertainty were identified, quantified, and combined in uncertainty budgets. The largest contribution to the calculation of blocked lysine came from estimating the conversion factor of blocked lysine into furosine during acid hydrolysis. For the calculation of reactive lysine, the main contribution came from the chromatographic determination of lysine. The uncertainty estimates were compared to available validation data (in-house and collaborative standard deviations of reproducibility).  相似文献   

14.
Enzymatically cleaved glycans from sub-milligram quantities of erythropoietin (EPO) and ovalbumin have been analyzed, without further purification, by two-dimensional diffusion-ordered nuclear magnetic resonance spectroscopy. At NMR sample concentrations below 50 μmol L−1 the major components of the oligosaccharide fractions could be distinguished by their anomeric proton chemical shift and their size-dependent diffusion coefficients. Figure 1H NMR diffusion decay curves of anomeric protons in the EPO glycan fraction  相似文献   

15.
The self-diffusion of water, ethanol and water-ethanol mixtures in polyacrylic acid (PAA) and PAA-polysulfone (PSF) composite membranes was measured with pulsed-field gradient (PFG)-nuclear magnetic resonance (NMR) spectroscopy. The partial solubilities and self-diffusion coefficients were obtained. An attempt was made to explain the transport properties of water and ethanol through the PAA layer and PAA-PSF composite membranes. It was concluded that there are two types of channels for diffusate transfer in PAA: an ionogenic hydrophilic channel which is selective for water and a hydrophobic channel which contains a predominance of ethanol molecules. The existence of aluminum nitrate in PAA influences the morphology of the latter channel. There is a good agreement between of the separation factors estimated from PFG-NMR data and those obtained by pervaporation testing.  相似文献   

16.
Dilute-acid biomass hydrolysates contain biomass degradation products that are inhibitory to cell growth and fermentation. Overliming with Ca(OH)2 has been found to be one of the most effective methods for detoxifying the dilute-acid hydrolysate for ethanol production. However, the mechanism of overliming is not well understood. Carbon-13 nuclear magnetic resonance (13C-NMR) spectroscopy was used to elucidate the functional groups involved in the overliming reaction. The 13C-NMR spectra showed that the major functional groups removed during the overliming process were aliphatic and aromatic acids or esters, and other aromatic and aliphatic compounds. Ketone and aldehyde functionalities were not detected in the spectra. This is the first time that 13C-NMR has been used to elucidate the overliming reaction.  相似文献   

17.
Multiple sclerosis (MS) is a nervous system disease that affects the fatty myelin sheaths around the axons of the brain and spinal cord, leading to demyelination and a broad range of signs and symptoms. MS can be difficult to diagnose because its signs and symptoms may be similar to other medical problems. To find out which metabolites in serum are effective for the diagnosis of MS, we utilized metabolic profiling using proton nuclear magnetic resonance spectroscopy (1H‐NMR). Random forest (RF) was used to classify the MS patients and healthy subjects. Atomic absorption spectroscopy was used to measure the serum levels of selenium. The results showed that the levels of selenium were lower in the MS group, when compared with the control group. RF was used to identify the metabolites that caused selenium changes in people with MS by building a correlation model between these metabolites and serum levels of selenium. For the external test set, the obtained classification model showed a 93% correct classification of MS and healthy subjects. The regression model of levels of selenium and metabolites showed the correlation (R2) value of 0.88 for the external test set. The results indicate the suitability of NMR as a screen for identifying MS patients and healthy subjects. A novel model with good prediction outcomes was constructed between serum levels of selenium and NMR data. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Quantification of magnetic resonance spectroscopy (MRS) signals is required for providing metabolite concentrations of the tissue under investigation. For estimating these concentrations several biochemical and acquisition conditions need to be taken into account. It is still a challenge to obtain reliable concentrations, as experimental conditions may have a detrimental effect on the spectral quality. The lineshape of MRS signals is affected, for instance, by inhomogeneities of the static magnetic field arising from imperfect shimming and tissue heterogeneities. To handle this type of distortions, we propose an extension of the self‐deconvolution method, where a common lineshape is estimated and a robust method with local regression is included to improve the smoothing of the estimated damping (or lineshape) function. This common lineshape is imposed in the metabolite quantification method and the spectral parameters (amplitude, frequency, damping and phase corrections) are obtained via nonlinear least squares. In this study, we considered distorted simulated, in vitro and in vivo rat brain signals which were lineshape corrected and quantitative results were compared in all three cases. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
A set of novel graph-theoretical parameters,called the atomic distance-edge (ADE) vector,was developed.Based on the connecting C-C bond number between central carbon atom and the other ones,various carbon atoms of alkanes were classified as four types,i.e.,type 1,2,3 and 4 for primary,secondary,ternary and quaternary carbon,respectively; and then four regression equations were obtained to link carbon-13 chemical shift (CS) of each type of atoms.Furthermore,these regression models were used to predict the carbon-13 nuclear magnetic resonance spectra of alkanes and it was found that the estimated CS were in agreement with the experimental results.  相似文献   

20.
Mass spectrometry (MS) and nuclear magnetic resonance (NMR) have been combined to achieve the complete microstructural characterization of a poly(methacrylic acid)-poly(methyl methacrylate) (PMAA-PMMA) copolymer synthesized by nitroxide-mediated polymerization. Various PMAA-PMMA species could be identified which mainly differ in terms of terminaisons. 1H and 13C NMR experiments revealed the structure of the end-groups as well as the proportion of each co-monomer in the copolymers. These end-group masses were further confirmed from m/z values of doubly charged copolymer anions detected in the single stage mass spectrum. In contrast, copolymer composition derived from MS data was not consistent with NMR results, obviously due to strong mass bias well known to occur during electrospray ionization of these polymeric species. Tandem mass spectrometry could reveal the random nature of the copolymer based on typical dissociation reactions, i.e., water elimination occurred from any two contiguous MAA units while MAA-MMA pairs gave rise to the loss of a methanol molecule. Polymer backbone cleavages were also observed to occur and gave low abundance fragment ions which allowed the structure of the initiating end-group to be confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号