首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
采用溶胶.凝胶和电沉积法制备Ti基纳米TiO2-Pt(Ti/纳米TiO2-Pt)修饰电极.X射线衍射(XRD)表明纳米TiO2为锐钛矿型,扫描电镜(SEM)显示Pt纳米粒子在纳米TiO2多孔膜的表面呈现簇分散状态,平均粒径约25nm.通过循环伏安(CV)和计时电流法研究了Ti/纳米TiO2-Pt修饰电极对乙二醛直接电氧化的电催化活性,结果表明,修饰电极对乙二醛的直接电氧化呈现良好的催化活性,在0.60和1.23 V(vs SCE)出现两个氧化峰,二者电流密度分别为16和42 mA·cm2,约为纯Pt电极的2倍和1.5倍,反应过程受浓差扩散控制.  相似文献   

2.
纳米TiO2-Pt修饰电极的制备及电催化活性   总被引:10,自引:0,他引:10  
采用电化学合成前驱体直接水解法和电沉积法制备高活性纳米TiO2-Pt修饰电极,并使用扫描电子显微镜(SEM)对电极的表面形貌和结构进行了表征; 通过循环伏安法研究了纳米TiO2-Pt修饰电极在H2SO4溶液中的电化学行为以及对Mn2+氧化为Mn3+的电催化活性. 结果表明,纳米TiO2的晶粒大小约30 nm,修饰在纳米TiO2膜表面的Pt微粒呈现单分散状态,平均粒径约60 nm,纳米TiO2-Pt修饰电极的电化学性能优于纯Pt电极,对Mn2+的电氧化具有高催化活性,非均相无隔膜电解氧化Mn2+生成Mn3+平均电流效率可达86%.  相似文献   

3.
间接电氧化法合成甘油醛   总被引:8,自引:0,他引:8  
通过电化学合成前驱体和溶胶-凝胶法在Ti表面修饰一层纳米TiO2膜,在纳米Ti02膜上电沉积分散的Pt微粒制成钛基纳米TiO2-Pt(Ti/nano-TiO2-pt)修饰电极。采用循环伏安法、间接电氧化法研究了纳米Ti02-Pt修饰电极的电催化活性以及Mn^3 /Mn^2 媒质氧化甘油为甘油醛的过程。结果表明,纳米Ti02-Pt修饰电极对Mn^2 的电氧化具有高催化活性,电流效率可达90%以上,非均相电解得到的Mn^3 可一步氧化甘油为甘油醛,收率为91%。  相似文献   

4.
使用新颖的纳米结构电极成对电合成葡萄糖酸锌和丁二酸.采用溶胶-凝胶法制备Ti基纳米TiO2(Ti/nanoTiO2)电极,同时采用电沉积法制备Ti基纳米TiO2-Pt(Ti/nanoTiO2-Pt)修饰电极.通过循环伏安研究发现,Ti/nanoTiO2-Pt电极对葡萄糖氧化及Ti/nanoTiO2电极对马来酸还原均具有高催化活性.以Ti/nanoTiO2-Pt电极为阳极、Ti/nanoTiO2电极为阴极,通过正交实验得到成对电合成葡萄糖酸锌和丁二酸的优化条件为:阳极和阴极电流密度分别为1.2A·dm-2和3.0A·dm-2,阳极液为0.4mol·L-1葡萄糖+0.6mol·L-1NaBr,阴极液为0.6mol·L-1马来酸+0.2mol·L-1NaCl,温度50℃.成对电合成的总电流效率达到170%.  相似文献   

5.
用合适金属修饰的铂催化剂能够显著增强其对甲酸氧化的电活性.本文以水热法制备了钛负载的纳米多孔铂电极(nanoPt/Ti),然后采用循环伏安法,通过扫描不同的周数(n),用适量的铅对nanoPt/Ti电极进行修饰,得到一种新型的铅修饰的纳米多孔铂电极(nano Pb_((n))-Pt/Ti).采用循环伏安(CV)、计时电流和计时电位法研究其对对甲酸氧化的电活性.CV结果显示nanoPt/Ti和nanoPb_((n))-Pt/Ti电极对甲酸氧化表现出较高的催化活性,并且nanoPb_((20))-Pt/Ti电极对甲酸氧化的起始电位为-0.06 V,相比nanoPt/Ti电极的起始电位(0.06 V),明显有所负移.此外,nanoPb_((20))-Pt/Ti电极的第一个氧化峰电流密度为12.7 mA·cm~(-2),远远大于nanoPt电极(4.4 mA·cm~(-2));计时电流显示在电位为0.1 V时,在0.5 mol·L~(-1)H_2SO_4+1 mol·L~(-1 )HCOOH溶液中,nanoPb_((20))-Pt/Ti电极达到稳定时的电流为8.09 mA·cm~(-2),是nanoPt电极的60倍,表明铅修饰的nanoPt/Ti对甲酸氧化的电活性急剧增加;在1.5mA、2 mA、2.2 mA和2.5 mA下的计时电位结果表明,nanoPb_((20))-Pt/Ti电极上甲酸氧化过程表现出显著的电化学振荡,且和nano Pt/Ti电极相比,振荡现象能持续更长的时间,说明nanoPb_((20))-Pt/Ti电极具有更强的表面抗毒化能力.  相似文献   

6.
Ti基纳米TiO_2-CNT-Pt复合电极制备、表征及电化学性能   总被引:3,自引:0,他引:3  
以电合成前驱体Ti(OEt)4直接水解法和电化学扫描电沉积法制备Ti基纳米TiO2-CNT-Pt(Ti/nanoTiO2-CNT-Pt)复合电极.透射电镜(TEM)和X射线衍射(XRD)测试表明,锐钛矿型纳米TiO2粒子(粒径5~10nm)和碳纳米管(CNT)结合形成网状结构,Pt纳米粒子(平均粒径9nm)均匀地分散在纳米TiO2-CNT复合膜表面.循环伏安及计时电流测试表明,Ti/nanoTiO2-CNT-Pt复合电极具有高活性表面,对甲醇的电化学氧化具有高催化活性和稳定性,Pt载量为0.32mg/cm2时,常温常压下甲醇氧化峰电流达到480mA/cm2.  相似文献   

7.
纳米TiO_2膜修饰电极异相电催化还原马来酸   总被引:3,自引:0,他引:3  
通过电化学合成前驱体和溶胶 -凝胶法在Ti表面修饰一层纳米TiO2 膜 ,SEM ,XRD测试表明晶型为锐钛矿型 ,晶粒平均尺寸为 2 5nm .采用循环伏安法、循环方波伏安法和电解合成法研究了纳米TiO2 膜电极在硫酸介质中的氧化还原行为以及对马来酸 (maleicacid)还原的电催化活性 .结果表明 ,纳米TiO2 膜电极在阴极扫描时有两对可逆氧化还原峰 ,可逆半波电位Er1/ 2 分别为 -0 .5 3V和 -0 .92V (vs .SCE ,扫描速度 0 .0 5V·s-1) ,对应于TiO2 /Ti2 O3 和TiO2 /Ti(OH) 3 两个氧化还原电对的可逆电极过程 .其中TiO2 /Ti2 O3 电对对马来酸具有异相电催化还原活性 ,纳米TiO2 膜中的TiⅣ/TiⅢ 氧化还原电对作为媒质间接电还原马来酸为丁二酸 (butanediacid) ,反应机理为电化学偶联随后化学催化反应 (EC′)机理 .  相似文献   

8.
利用LB膜技术可控制备了纳米单层和多层的二氧化钛-有机钌螯合物杂化膜,并研究了上述无机-有机杂化膜修饰电极在Pt纳米团簇敏化后的光电流增强效应.实验结果表明:(1)纳米单层TiO2/[Ru(phen)2(dC18bpy)]2+(简称为TiO2-Ru)杂化膜的平均厚度为(3.6±0.5)nm;(2)在光照条件下TiO2-Ru杂化膜能有效催化还原[Pt(NH3)6]4+形成粒径位于20~160nm之间的Pt纳米团簇;(3)Pt纳米团簇的引入消除了金属钌螯合物中配体对电子传递的阻碍作用,改变了电子传递途径,从而有效减少了电子空穴对的复合,提高了Pt纳米团簇敏化的n层杂化膜修饰电极(ITO/(TiO2-Ru)n/Pt)在支持电解质中的光电流.与纳米单层TiO2-Ru杂化膜修饰的ITO电极(ITO/TiO2-Ru)相比,当工作电压为900mV时,ITO/TiO2-Ru/Pt在0.1mol·L-1的NaClO4电解质溶液中和光照(λ360nm)条件下,单位面积的光电流提高了约5倍;(4)ITO/(TiO2-Ru)n/Pt电极光电流的大小与杂化膜的层数密切相关,当TiO2-Ru杂化膜的层数从一层、二层增加到四层时,光电流呈现先升高后下降行为,这表明ITO/(TiO2-Ru)n/Pt电极的电子传递过程直接通过非电活性的二氧化钛纳米单层进行.  相似文献   

9.
循环伏安法研究葡萄糖在离子液体[EMI]BF4中于碳纳米管/纳米TiO2膜载Pt(CNT/nanoTiO2-Pt)复合膜电极上的电催化氧化.结果表明,CNT/nanoTiO2-Pt电极对葡萄糖氧化具有高催化活性,氧化电位为-0.46V;在组成为离子液体与水的体积比为3∶1的电解液中,葡萄糖的氧化效果最好.电极反应过程受浓差极化控制.  相似文献   

10.
脉冲电沉积法制备Pt-TiO2 纳米管电极及其电催化性能   总被引:2,自引:0,他引:2  
采用阳极氧化法在高纯钛片上原位组装TiO2纳米管阵列, 然后用脉冲电沉积方法将Pt沉积到TiO2纳米管阵列上, 制备出Pt-TiO2纳米管电极. 利用XRD和SEM对所获电极的微观结构和形貌进行表征, 结果表明, Pt纳米颗粒以花簇状分散在TiO2纳米管上, 晶粒大小约为25.6 nm. 对甲醇的电催化性能的研究结果表明, 脉冲电沉积制得的Pt-TiO2纳米管电极比TiO2纳米管电极和纯Pt片电极具有更高的电催化活性, 是Pt电极的40多倍.  相似文献   

11.
乙醇在Pt/nanoTiO2-CNT复合催化剂上的电催化氧化   总被引:10,自引:0,他引:10  
通过前驱体Ti(OEt)4直接水解和电化学扫描电沉积法制备在Ti基体上的纳米TiO2-碳纳米管复合膜载Pt(Pt/nanoTiO2-CNT)复合催化剂. 透射电镜 (TEM) 和X射线衍射 (XRD) 结果表明, 锐钛矿型纳米TiO2粒子和Pt纳米粒子(粒径均为5~10 nm)均匀地分散在碳纳米管表面. 通过循环伏安和计时电流法研究表明, Pt/nanoTiO2-CNT 复合催化剂(Pt载量为0.32 mg•cm−2) 具有高达51.8 m2•g−1的电化学活性比表面积, 常温常压下对乙醇的电化学氧化具有高催化活性和稳定性, 乙醇氧化峰电位分别为0.59、0.96和0.24 V, 氧化峰电流密度分别达到−115、−113和−75 mA•cm−2. 复合催化剂对乙醇电氧化的高催化活性可归因于nanoTiO2、CNT和Pt纳米粒子的协同催化作用.  相似文献   

12.
NanoTiO2-CNT复合膜电极在DMF溶液中对糠醛的异相电催化还原   总被引:4,自引:0,他引:4  
通过在乙醇中电化学溶解Ti金属阳极合成前驱体Ti(OEt)4和溶胶-凝胶法在Ti表面修饰一层纳米TiO2-碳纳米管(nanoTiO2-CNT)复合膜, 采用循环伏安和电解合成法研究了nanoTiO2-CNT复合膜电极在N, N-二甲基甲酰胺(DMF)中的氧化还原行为以及对糠醛(furfural)还原的电催化活性. 结果发现, nanoTiO2-CNT电极在阴极扫描时有两对氧化还原峰, 可逆半波电位E r1/2 分别为-1.27 V和-2.44 V(vs SCE, 扫描速度100 mV•s-1), 分别对应于TiO2/Ti2O3氧化还原电对的可逆电极过程和TiO2/Ti(OH)3电对的准可逆电极过程;在DMF电解液中nanoTiO2-CNT复合膜中的Ti(IV)/Ti(III)氧化还原电对作为媒质间接电还原糠醛为糠醇, 反应机理为电化学偶联随后化学催化反应(EC′)机理.  相似文献   

13.
贵金属掺杂Ti/TiO2电极的制备及其电催化性能研究   总被引:1,自引:0,他引:1  
孙娟  沈嘉年  姚书典   《化学学报》2006,64(7):647-651
采用阳极氧化-阴极电沉积两步法: 先在钛基体上用阳极氧化法制备多孔TiO2薄膜, 接着在这层多孔状薄膜上采用阴极电沉积方法掺杂Pt, Ir来制备Ti/TiO2-Pt修饰电极和Ti/TiO2-Ir修饰电极. 用XRD, SEM分析了掺杂前后的成分、相结构及表面形貌的变化, 结果表明: Pt优先沉积在TiO2多孔中; 与Pt不同, Ir没有表现出在TiO2孔中优先沉积的现象, 出现这种现象的原因是这两种贵金属的电沉积电位相对于n-TiO2的平带电位不同. 使用SIMS分析了在Ti/TiO2-(Pt/Ir)修饰电极中Ti, Pt, Ir的浓度分布, 大致算出TiO2薄膜厚度为750 nm左右. 由极化曲线和阻抗谱结果得出: 掺杂Pt, Ir明显改善了Ti/TiO2 电极的电催化性能, 且随着Pt沉积时间的增长, 修饰电极在硫酸析氧反应中的电催化活性提高.  相似文献   

14.
采用阳极氧化和恒电位沉积法制备Pb纳米粒子修饰的多孔Ti基TiO2(Pb/nanoTiO2)膜电极.通过对不同的电沉积电位和时间对比,找出了最佳电沉积条件.SEM分析显示该膜为均匀多孔结构,Pb纳米粒子均匀地分散在TiO2膜的表面.循环伏安和计时电流法研究了L-胱氨酸在Pb/nanoTiO2膜电极上的电催化还原活性,结果表明该电极对L-胱氨酸的还原具有高催化活性和稳定性.  相似文献   

15.
甲醇在铂修饰的氧化钛电极上电催化氧化行为的研究   总被引:8,自引:0,他引:8  
运用电化学方法评价了电化学阴极还原-阳极氧化两步法制得的以钛为基体的铂修饰的钛氧化物(Pt-TiOx/Ti)电极对甲醇电催化氧化的性能,结果表明,制得的修饰电极对甲醇氧化呈现了很高的电催化活性和好的稳定性.通过X光电子能谱(XPS)、扫描隧道显微镜(STM)和现场傅立叶变换红外(FTIR)反射光谱等技术,发现修饰电极对甲醇氧化具有高的电催化性能,可归属于纳米级Pt粒子在TiOx中的高度分散及由于Pt和TiOx的相互作用,使电极表面对甲醇氧化中间产物CO的吸附量大大降低.  相似文献   

16.
CO在铂修饰的氧化钛电极上电催化氧化行为的研究   总被引:3,自引:0,他引:3  
通过阴极还原-阳极氧化法制备了Pt—TiO2/Ti电极,研究了CO在该电极上的电化学行为和电极制备条件对CO电催化氧化的影响.结果表明,与Pt电极相比.CO在Pt—TiO2/Ti电极上的氧化峰峰电位负移了100mV,并且表现出较好的稳定性.通过XPS技术对Pt—TiO2/Ti电极进行了表征.发现Pt以金属形式存在,Ti以TiO2形式存在.Pt—TiO2/Ti电极能抗CO中毒的原因可能是因为TiO2的掺杂使引起催化剂中毒的桥式吸附的CO物种在复合催化剂上的吸附率较低所致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号