首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The synthesis of π-conjugated polymers via an environmentally friendly procedure is generally challenging. Herein, we describe the synthesis of divanillin-based polyazomethines, which are derived from a potentially bio-based monomer. The polymerization is performed in 5 min under microwave irradiation without any metallic catalyst, with water as the only by-product. The vanillin-based polyazomethines were characterized by SEC, TGA, and UV-Vis spectroscopy. Model compounds were designed and characterized by X-ray diffraction and UV-Vis spectroscopy. The structure/properties study of vanillin-based azomethines used as models allowed us to unequivocally confirm the E configuration and to highlight the cross-conjugated nature of divanillin-based polymers.  相似文献   

2.
DFT/B3LYP calculations were carried out on several π-complexes formed by cations and anions with annelated benzene, respectively. The binding energies obtained with standard method were corrected by basis set superposition error (BSSE) and zero-point energy (ZPE) during the geometry optimization for all complexes at the same levels of theory, respectively. Some different aspects of the π–cation have been compared to those of π–anion, involving in binding energy changes in effect of ring annelation, the aromaticity of the ring upon complexation, Mulliken and NBO charge-transfer. The effect of BSSE correction during the optimization is very important in some π–anion complexes whether or not using diffuse functions in basis set, and results with at least one set of diffuse functions 6-31+G(d) basis set is a little better than results obtained by 6-31G(d, p) basis set for some π–anion especially for F complexes.  相似文献   

3.
Hatree–Fock calculations at ab initio and semiempirical levels were carried out for the averaged polarizability α and second hyperpolarizability γ of two pairs of quadrupolar isomers with different donor and acceptor groups. These properties were correlated with the antibonding/bonding π occupation number (π*/π ratio). It was found that isomers with extended π systems had low π*/π ratios and high α and γ values, while low α and γ values were obtained for isomers with large π*/π ratios and no extended π system. The PM3 and PM6 α values were found to be in excellent agreement with the HF/6-31+G(d,p) ones. The PM3 values for γ were significantly larger than those calculated by HF/6-31+G(d,p), with an average PM3/HF ratio of 1.43. The PM6 results were noticeably better with a ratio of 0.85. The calculation of α and γ at MP2/6-31+G(d,p) level for representative isomers showed that the contribution of the electron correlation to their values was small and that the HF/6-31+G(d,p) method provides reliable values at much lower computational cost.  相似文献   

4.
In 1996, we reported that silyl groups of 9,10-disilylanthracenes significantly affect the UV/Vis and fluorescence spectra. Although the results indicate that the silyl groups have strong electronic effects on anthracene, the details of the mechanisms responsible for this have not yet been clarified. This article describes the analysis of the UV/Vis and fluorescence spectra of 9,10-bis(diisopropylsilyl)anthracene by theoretical calculations. This study reveals that π conjugation of anthracene is extended by cooperation of σ–π and σ*–π* conjugation between the silyl groups and anthracene. This effect increases the transition moment of the π–π* transition of anthracene. As a result, the molecular extinction coefficient of the 1La band and the fluorescence quantum yield are increased.  相似文献   

5.
A new Cu(Ι) coordination compound, Cu4(L)4·2EtOH (1), has been obtained from the solvothermal reaction of CuBr, HL (L=5-(4-pyridyl) tetrazole), EtOH and NH3·H2O. The structure determination reveals that 1 has a 2D network, where each Cu(I) atom adopts a trigonal coordination mode. The 2D networks stacked in an ABAB sequence through the π–π interaction to form a 3D supramolecular framework, giving a 1D channel along the b-axis. The TGA and powder XRD measurements reveal that the framework is stable after removal of the guest molecules. Gas (N2) adsorption measurement was carried out for the framework. Framework 1 shows II sorption profile with N2, which indicates that N2 molecules cannot diffuse into the micropore and only surface adsorption occurs. The photoluminescent research shows that compound 1 displays an interesting solvent-dependent luminescence.  相似文献   

6.
9-Anthryl and 1-pyrenyl terpyridines (1 and 2, respectively), key precursors for the design of novel fluorescent sensors have been synthesized and characterized by 1H NMR, mass spectroscopy and X-ray crystallography. Twisted molecular conformations for each 1 and 2 were observed in their single crystal structures. Energy minimization calculations for the 1 and 2 using the semi-empirical AM1 method show that the ‘twisted’ conformation is intrinsic to these systems. We observe interconnected networks of edge-to-face CHπ interactions, which appear to be cooperative in nature, in each of the crystal structures. The two twisted molecules, although having differently shaped polyaromatic hydrocarbon substituents, show similar patterns of edge-to-face CHπ interactions.The presently described systems comprise of two aromatic surfaces that are almost orthogonal to each other. This twisted or orthogonal nature of the molecules leads to the formation of interesting multi-directional ladder like supramolecular organizations. A combination of edge-to-face and face-to-face packing modes helps to stabilize these motifs. The ladder like architecture in 1 is helical in nature.  相似文献   

7.
The title compound, cobalt 4′,7-diethoxylisoflavone-3′-sulfonate([Co(H2O)6](X)2⋅8H2O, X = C19H17O4SO3) was synthesized and its structure was determined by single-crystal X-ray diffraction analysis. It crystallizes in the triclinic space group P-1 with cell parameters a = 9.026(3) Å, b = 16.431(5) Å, c = 18.195(6) Å, α = 72.289(4), β = 87.498(4), γ = 82.775(5), V = 2550.1(13) Å−3, Dc = 1.419 Mg m−3, and Z = 2. The results show that the title compound consists of one cobalt cation, six coordinated water molecules, eight lattice water molecules, and two 4′,7-diethoxylisoflavone-3′-sulfonate anions, C19H17O4SO3. Two anions have different conformations. Twelve H atoms of six coordinated water molecules, as donors, form hydrogen bonds with four oxygen atoms of sulfo-groups of two anions and eight oxygen atoms of eight lattice water molecules. In addition, π < eqid1 > ⋅ < eqid2 > π stacking interactions exist in the crystal structure, which together with hydrogen bonds lead to supramolecular formation with a three-dimensional network.  相似文献   

8.
Uracil–(H2O)n (n = 1–7) clusters were systemically investigated by ab initio methods and the newly constructed ABEEMσπ/MM fluctuating charge model. Water molecules have been gradually placed in an average plane containing uracil. The geometries of 38 uracil–water complexes were obtained using B3LYP/6-311++G** level optimizations, and the energies were determined at the MP2/6-311++G** level with BSSE corrections. The ABEEMσπ/MM potential model gives reasonable properties of these clusters when comparing with the present ab initio data. For interaction energies, the root mean square deviation is 0.96 kcal/mol, and the linear coefficient reaches 0.997. Furthermore, the ABEEMσπ charges changed when H2O interacted with the uracil molecule, especially at the sites where the hydrogen bond form. These results show that the ABEEMσπ/MM model is fine giving the overall characteristic hydration properties of uracil–water systems in good agreement with the high-level ab initio calculations.  相似文献   

9.
Water-soluble daidzein derivatives, [Ni(H2O)6](C16H11O4SO3)2⋅10H2O and [Zn(H2O)6] (C16H11O4SO3)2⋅10H2O (C16H11O4SO3, 7-methoxy-4′-hydroxylisoflavone-3′-sulfonate) were synthesized and their crystal structures were determined by X-ray diffraction analysis. The crystals of them all belong to triclinic crystal system, space group P . The results show that the two derivatives consist of metal cation [Ni(H2O)6]2+ and [Zn(H2O)6]2+, anion C16H11O4SO3 and H2O. Ni2+ and Zn2+ are the centers of the two compounds, respectively. A hydrophilic region is built by a variety of hydrogen bonds among [Ni(H2O)6]2+ or [Zn(H2O)6]2+, C16H11O4SO3 and the lattice water molecules. Aromatic π–π stacking interactions assemble the isoflavone skeletons into a column and the columns form a hydrophobic region of daidzein derivatives. The sulfo-groups bridge the hydrophilic and hydrophobic region as well as the inorganic and organic components.  相似文献   

10.
π–π stacking interaction is well-known to be one of the weak interactions. Its importance in the stabilization of protein structures and functionalization has been reported for various systems. We have focused on a single copper oxidase, galactose oxidase, which has the π–π stacking interaction of the alkylthio-substituted phenoxyl radical with the indole ring of the proximal tryptophan residue and catalyzes primary alcohol oxidation to give the corresponding aldehyde. This stacking interaction has been considered to stabilize the alkylthio-phenoxyl radical, but further details of the interaction are still unclear. In this review, we discuss the effect of the π–π stacking interaction of the alkylthio-substituted phenoxyl radical with an indole ring.  相似文献   

11.
Triplet energy level-dependent decay pathways of excitons populated on iridium (Ir) complexes within π-conjugated polymeric matrices were studied by means of photoluminescence (PL) and photoconduction action spectroscopy. We chose a set of matrices, poly(9-vinylcarbazole) (PVK), poly[9,9-bis(2-ethylhexyl)fluorene-2,7-diyl] (PF2/6), poly [2-(5′-cyano-5′-methyl-hexyloxy)-1,4-phenylene] (CNPPP), and poly [2-(5′-cyano-5′-methyl-hexyloxy)-1,4-phenylene-co-pridine] (CNPPP-py10 and CNPPP-Py20), having triplet energy levels ranging from 2.2 up to 3.0 eV. As Ir-complex dopants, we selected three phosphorescent emitters, iridium(III)bis(2-(2′-benzothienyl) pyridinato-N-acetylacetonate) (Ir(btp)2acac), iridium(III)fac-tris(2-phenylpyridine) (Ir(ppy)3), and iridium(III)bis[(4,6-fluorophenyl)-pyridinato-N,C2′]picolinate (FIrpic), having triplet energy levels of 2.1, 2.5, and 2.7 eV, respectively. It was found that the triplet emission from the dopants, being populated via energy transfer from the matrices, was strongly dependent on the matching of triplet energy levels between matrix polymers and Ir-complexes. Photocurrent action spectra confirm effective exciton confinement at the dopants sites in the case of PVK matrix systems.  相似文献   

12.
A bonded silica stationary phase (SP 1) was prepared by connecting N-(3,5-dinitrobenzoyl) aminoundecylsilane to silica gel. The stationary phase was applied in resolving a liquid crystal mixture with a reversed phase high performance liquid chromatography (HPLC) mode and the chromatographic resolution results were compared with those on an octadecylsilane (ODS) column. From the comparison of the resolution results on SP 1 and the ODS column, we found the new stationary phase was better than the ODS column in resolving a liquid crystal mixture and the elution orders of some liquid crystal were changed. The better resolution and the change in the elution orders on the new column might be originated from additional π–π interaction between the π-acidic 3,5-dinitrobenzoyl group of the stationary phase and the π-basic aromatic group of liquid crystals.  相似文献   

13.
Protein kinases are key enzymes in many signal transduction pathways, and play a crucial role in cellular proliferation, differentiation, and various cell regulatory processes. However, aberrant function of kinases has been associated with cancers and many other diseases. Consequently, competitive inhibition of the ATP binding site of protein kinases has emerged as an effective means of curing these diseases. Over the past three decades, thousands of protein kinase inhibitors (PKIs) with varying molecular frames have been developed. Large-scale data mining of the Protein Data Bank resulted in a database of 2139 non-redundant high-resolution X-ray crystal structures of PKIs bound to protein kinases. This provided us with a unique opportunity to study molecular determinants for the molecular recognition of PKIs. A chemoinformatic analysis of 2139 PKIs resulted in findings that PKIs are “flat” molecules with high aromatic ring counts and low fractions of sp3 carbon. All but one PKI possessed one or more aromatic rings. More importantly, it was found that the average weighted hydrogen bond count is inversely proportional to the number of aromatic rings. Based on this linear relationship, we put forward the exchange rule of hydrogen bonding interactions and non-bonded π-interactions. Specifically, a loss of binding affinity caused by a decrease in hydrogen bonding interactions is compensated by a gain in binding affinity acquired by an increase in aromatic ring-originated non-bonded interactions (i.e., π–π stacking interactions, CH–π interactions, cation–π interactions, etc.), and vice versa. The very existence of this inverse relationship strongly suggests that both hydrogen bonding and aromatic ring-originated non-bonded interactions are responsible for the molecular recognition of PKIs. As an illustration, two representative PKI–kinase complexes were employed to examine the relative importance of different modes of non-bonded interactions for the molecular recognition of PKIs. For this purpose, two FDA-approved PKI drugs, ibrutinib and lenvatinib, were chosen. The binding pockets of both PKIs were thoroughly examined to identify all non-bonded intermolecular interactions. Subsequently, the strengths of interaction energies between ibrutinib and its interacting residues in tyrosine kinase BTK were quantified by means of the double hybrid DFT method B2PLYP. The resulting energetics for the binding of ibrutinib in tyrosine kinase BTK showed that CH–π interactions and π–π stacking interactions between aromatic rings of the drug and hydrophobic residues in its binding pocket dominate the binding interactions. Thus, this work establishes that, in addition to hydrogen bonding, aromatic rings function as important molecular determinants for the molecular recognition of PKIs. In conclusion, our findings support the following pharmacophore model for ATP-competitive kinase inhibitors: a small molecule features a scaffold of one or more aromatic rings which is linked with one or more hydrophilic functional groups. The former has the structural role of acting as a scaffold and the functional role of participating in aromatic ring-originated non-bonded interactions with multiple hydrophobic regions in the ATP binding pocket of kinases. The latter ensure water solubility and form hydrogen bonds with the hinge region and other hydrophilic residues of the ATP binding pocket.  相似文献   

14.
Representatives of the homologous series of α,ω-diallylpermethyloligosilanes were synthesized for the first time by the reaction of α,ω-dichloropermethyloligosilanes Cl(Me2Si)nCl (n = 2–6) with allylmagnesium chloride. Fragmentation of α,ω-diallylpermethyloligosilanes under electron impact ionization was studied by mass spectrometry.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2129–2132, October, 2004.  相似文献   

15.
The variety of interactions have been analyzed in numerous studies. They are often compared with the hydrogen bond that is crucial in numerous chemical and biological processes. One can mention such interactions as the halogen bond, pnicogen bond, and others that may be classified as σ-hole bonds. However, not only σ-holes may act as Lewis acid centers. Numerous species are characterized by the occurrence of π-holes, which also may play a role of the electron acceptor. The situation is complicated since numerous interactions, such as the pnicogen bond or the chalcogen bond, for example, may be classified as a σ-hole bond or π-hole bond; it ultimately depends on the configuration at the Lewis acid centre. The disadvantage of classifications of interactions is also connected with their names, derived from the names of groups such as halogen and tetrel bonds or from single elements such as hydrogen and carbon bonds. The chaos is aggravated by the properties of elements. For example, a hydrogen atom can act as the Lewis acid or as the Lewis base site if it is positively or negatively charged, respectively. Hence names of the corresponding interactions occur in literature, namely hydrogen bonds and hydride bonds. There are other numerous disadvantages connected with classifications and names of interactions; these are discussed in this study. Several studies show that the majority of interactions are ruled by the same mechanisms related to the electron charge shifts, and that the occurrence of numerous interactions leads to specific changes in geometries of interacting species. These changes follow the rules of the valence-shell electron-pair repulsion model (VSEPR). That is why the simple classification of interactions based on VSEPR is proposed here. This classification is still open since numerous processes and interactions not discussed in this study may be included within it.  相似文献   

16.
Ultrasonic irradiation with the frequency of 20–22 kHz and absorbed acoustic power about 0.4 W ml–1 causes degradation of An(IV) tetrakis-β-diketonates, AnL4, where An(IV) is Th(IV), Np(IV), and Pu(IV), and HL is hexafluoroacetylacetone (HFAA) and dibenzoylmethane (HDBM), in hexadecane solutions in the presence of argon. The rate of the sonochemical process corresponds to a first-order kinetic law with respect to metal β-diketonate concentrations. The first-order rate constant of sonolysis increases with the increase in the volatility of the metal complexes. Solid sonication products consisted of a mixture of actinide carbides and partial degradation products, PDP, of initial metal β-diketonates. It is assumed that metal carbides are formed within the cavitating bubbles as a result of high-temperature process with participation of actinide(IV) β-diketonates and solvent vapours. PDP formation is attributed to the thermolysis of the complexes in a liquid reaction zone surrounding the cavitating bubble. To cite this article: S.I. Nikitenko et al., C. R. Chimie 7 (2004).

Résumé

L’irradiation ultrasonore avec une fréquence de 20–22 kHz et une intensité acoustique de 0,4 W ml–1 conduit à la décomposition de An(IV) tétrakis-β-dicétones, AnL4, où An(IV) est Th(IV), Np(IV) et Pu(IV), et HL est l’hexafluoroacétylacétone (HFAA) et le dibenzoylméthane (HDBM) en milieu hexadécane sous argon. La cinétique de décomposition sonochimique est d’ordre 1 par rapport à la concentration du complexe et la cinétique augmente avec la volatilité du complexe métallique. Les produits solides de décomposition sont un mélange de carbure d’actinides et de produits de décomposition partielle PDP. Il a été observé que les carbures d’actinide sont formés dans la bulle de cavitation compte tenu des fortes températures et de la présence simultanée du complexe métallique volatil et du solvant (hexadécane). La formation des PDP est attribuée à la thermolyse du complexe à l’interface de la bulle de cavitation. Pour citer cet article : S.I. Nikitenko et al., C. R. Chimie 7 (2004).  相似文献   

17.
We report molecular dynamics studies on the effect of CCD (chlorinated cobalt-dicarbollide) anions on the Eu3+ lanthanide cation extraction by a calix[4]arene-CMPO ligand L, focusing on the water–‘oil’ interface, where ‘oil’ is modelled by chloroform. The free L ligand and its EuL3+ complex are found to adsorb and to concentrate at the interface, but are too hydrophilic to be extracted. Addition of CCD anions in diluted conditions (either covalent linked to L or as separated CCD H3O+ ions) also leads to adsorption of these species at the interface. However, at high concentrations, CCD anions saturate the interface and promote the extraction of EuL3+ to the oil phase. Another important feature concerns the uncomplexed Eu(CCD)3 salt: accumulation of CCD anions at the interface creates a negative potential which attracts the hydrated Eu3+ ions, therefore facilitating their complexation by interfacial ligands. These features allow us to better understand the synergistic effect of lipophilic anions in the assisted liquid-liquid extraction of trivalent M3+ lanthanide or actinide cations. To cite this article: B. Coupez, G. Wipf, C. R. Chimie 7 (2004).

Résumé

Synergie due aux anions dicarbollides lors de l’extraction d’ions lanthanides M3+ par des calix[4]arènes : simulations de dynamique moléculaire à l’interface eau–« huile ». Nous étudions par simulations de dynamique moléculaire l’effet de synergie dû aux anions CCD (cobalt-dicarbollides) lors de l’extraction de Eu3+ par un calix [4]arène L, en se focalisant sur l’interface eau–« huile », l’huile étant modélisée par du chloroforme. On montre que le ligand L et son complexe EuL3+ s’adsorbent à l’interface, mais sont trop hydrophiles pour être extraits. L’addition d’anions CCD (qu’ils soient sous la forme d’ions CCD H3O+ séparés ou greffés de façon covalente au calixarène) conduit aussi à l’adsorption de ces espèces à l’interface. Cependant, aux plus fortes concentrations, les anions CCD saturent l’interface et induisent l’extraction du complexe EuL3+ vers l’huile. Un autre résultat remarquable concerne les sels Eu(CCD)3 : l’accumulation des anions CCD à l’interface y crée un potentiel négatif, ce qui attire les cations Eu3+ et facilite ainsi leur complexation par des ligands à l’interface. Ces résultats permettent de mieux comprendre l’effet de synergie dû aux anions CCD lors de l’extraction d’ions lanthanides ou actinides M3+ et, d’une manière générale, ce qui se passe à l’interface entre l’eau et des liquides non miscibles. Pour citer cet article : B. Coupez, G. Wipf, C. R. Chimie 7 (2004).  相似文献   

18.
The reaction of benzoylacetone with ortho-substituted aniline derivatives gives the unsymmetrical β-iminoamine ligands (58) with high yields. A convenient synthesis is described. These compounds have been characterized by NMR and IR spectroscopies. The structure of the β-iminoamine 5, 3-N-(2,6-diisopropylphenylamino)-1-phenyl-1N-(2,6-diisopropylphenylimino)but-2-ene, was solved by X-ray diffraction methods.  相似文献   

19.
The total π-electron energy problem can be formulated as a classical problem of moments. This observation allows us to apply general methodologies developed in the field of moment’s theory to solve the total π-electron energy problem. In the present article, we apply the Backus–Gilbert method to obtain analytical expressions for the total π-electron energy in terms of its spectral moments.AMS subject classification: 30E05, 05C50, 92E10, 78M05  相似文献   

20.
CCSD(T)/aug-cc-pVTZ//ωB97XD/aug-cc-pVTZ calculations were performed for halogen-bonded complexes. Here, the molecular hydrogen, cyclopropane, cyclobutane and cyclopentane act as Lewis base units that interact through the electrons of the H–H or C–C σ-bond. The FCCH, ClCCH, BrCCH and ICCH species, as well as the F2, Cl2, Br2 and I2 molecular halogens, act as Lewis acid units in these complexes, interacting through the σ-hole localised at the halogen centre. The Quantum Theory of Atoms in Molecules (QTAIM), the Natural Bond Orbital (NBO) and the Energy Decomposition Analysis (EDA) approaches were applied to analyse these aforementioned complexes. These complexes may be classified as linked by A–X···σ halogen bonds, where A = C, X (halogen). However, distinct properties of these halogen bonds are observed that depend partly on the kind of electron donor: dihydrogen, cyclopropane, or another cycloalkane. Examples of similar interactions that occur in crystals are presented; Cambridge Structural Database (CSD) searches were carried out to find species linked by the A–X···σ halogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号