首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gd1−xCaxBaSrCu3O7−δ samples (0  x  0.1) were prepared via solid-state reaction. Four-point probes method was used for resistance versus temperature measurements. Results show decrease in Tc by increasing x content. This variation is assumed to be irrelevant to the different phases or impurity effects since X-ray patterns show all samples are tetragonal single-phase. Ca doping decreases the oxygen content and lattice parameters of the samples. It is suggested that Ca prevents the dislocation of oxygen, and then disrupts the hole concentration of the system and antiferromagnetic correlation at CuO2 planes. Subsequently, destroys the superconductivity of the samples.  相似文献   

2.
The microstructures and the microwave dielectric properties of the (1 − x)(Mg0.95Co0.05)TiO3x(Na0.5La0.5)TiO3 ceramic system were investigated. Two-phase system was confirmed by the XRD patterns and the EDX analysis. A co-existed second phase (Mg0.95Co0.05)Ti2O5 was also detected. The microwave dielectric properties are strongly related to the density and the matrix of the specimen. A new microwave dielectric material 0.88(Mg0.95Co0.05)TiO3–0.12(Na0.5La0.5)TiO3, possessing an excellent combination of dielectric properties: εr  22.36, Q × f  110,000 GHz (at 9 GHz), τf  2.9 ppm/°C), is proposed as a candidate dielectric for GPS patch antennas.  相似文献   

3.
In this study, we report the novel β-Ga2O3 nanostructures synthesized by the thermal evaporation of Ga droplet in the presence of Au catalysts at 900 °C. The morphology and structure of the products were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The single-crystalline β-Ga2O3 nanosheets have lateral dimensions up to several tens of microns. Large arrays of column-like layered crystal β-Ga2O3 structures that consisted of many nanosheets were formed on the Au-coated silicon substrate under the suitable vapor concentration. These novel β-Ga2O3 nanostructures are expected to have potential application in functional nanodevices.  相似文献   

4.
Two types of γ-Fe2O3 nanoparticles, pure γ-Fe2O3 and γ-Fe2O3 dispersed on sol–gel silica spheres (γ-Fe2O3/SiO2) in thin film form were prepared by the sol–gel technique. Transmission electron microscopy, X-ray diffraction, optical transmittance and FTIR studies along with photoluminescence measurements were carried out for characterizing the samples. The X-ray diffraction patterns of both γ-Fe2O3 nanoparticles and γ-Fe2O3/SiO2 indicated their phase-pure forms which were supported by the FTIR spectra. The average sizes of the nanoparticles obtained from transmission electron microscopy studies were 4 nm for both types of samples. Optical transmittance studies indicated direct allowed transitions with two band gaps at 2.43 and 3.07 eV. Although both types of samples showed excitonic luminescence at 2.38 eV (at room temperature), the luminescence intensity of the γ-Fe2O3/SiO2 was higher than that of pure γ-Fe2O3.  相似文献   

5.
In this work, a series of novel solid-type α-Al2O3-containing polyacrylonitrile (PAN)-based composite polymer electrolytes (CPE) with high conductivity and high mechanical property at room temperature has been prepared. The effect of the addition of α-Al2O3 on the properties of the PAN-based composite polymer electrolyte has been analyzed. The best conductivities obtained at room temperature is 5.7×10−4 S cm−1 from the CPE with 7.5 wt.% α-Al2O3 and 0.6 LiClO4 per PAN repeat unit. The stress–strain test result indicates that the membranes prepared possess high yield stress (73 kg cm−2) suitable for serving as separators in the solid-state lithium and lithium ion batteries and high yield elongation (225%) pliable to form good interface with electrodes. Also discussed are the effects of the addition of the ceramics on the interactions in the system and the possible conduction mechanism.  相似文献   

6.
We have succeeded in synthesizing a powder form of Gd2Ba4CuFeOy (Gd2411) in air. GdBa2Cu3O7−δ (Gd123)/Gd2BaCuO5 (Gd211) precursor powders added with different amounts of Gd2Ba4CuFeOy (x = 0, 0.002, 0.004, 0.02) in molar ratio to Gd123 have been fabricated successfully into the form of large, single grains by the top seeded melt growth (TSMG) process. The relation between the additions amounts of Gd2411/Gd211 and critical current density (JC) was analyzed. We found Gd2411 particles stably exist in the Gd123 matrix without degradation of superconducting properties owing to the existence of the Fe magnetic ion. The trapped field was observed to increase significantly compared with the bulk without Gd2411 additions.  相似文献   

7.
α-Fe2O3 nanoparticles were prepared by high-energy ball milling using α-FeOOH as raw materials. The prepared samples were characterized by transmission electron microscopy (TEM), Mössbauer spectroscopy, X-ray diffraction (XRD) and differential thermal analysis–thermogravimetric analysis (DTA–TGA). The results showed that after 90 h milling α-Fe2O3 nanoparticles were obtained, and the particle size is about 20 nm. The mechanism of reaction during milling is supposed that the initial α-FeOOH powder turned smaller and smaller by the high-speed collision during ball milling, later these particles turned to be superparamagnetic, at last these superparamagnetic α-FeOOH particles were dehydrated and transformed into α-Fe2O3.  相似文献   

8.
0.95Pb(Sc0.5Ta0.5)O3-0.05PbTiO3 thin films were prepared on LaNiO3/SiO2/Si substrate by radio frequency magnetron sputtering, and the films were annealed subsequently with repeated many times by two approaches: normal one-step rapid thermal annealing and innovative two-steps rapid thermal annealing. X-ray diffraction demonstrates that all the films were preferred (1 0 0) oriented and an appropriate repeat of annealing process can enhance perovskite phase of the films. Scanning electron microscopy suggests that the films treated by two-steps rapid thermal annealing show crack-free, uniform size grains and dense microstructure. Measurement of remnant polarization and leakage current dependence of electric field confirms that the films treated by two-steps rapid thermal annealing exhibit better ferroelectric properties than the films treated by one-steps rapid thermal annealing. The results reveal that microstructure plays an important role in enhanced ferroelectric properties of the 0.95Pb(Sc0.5Ta0.5)O3-0.05PbTiO3 thin films.  相似文献   

9.
In this work, polypyrrole/nano-Y2O3 conducting composite was synthesized by chemical oxidative polymerization. The composite was characterized using transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectra, UV-vis absorption spectra, X-ray photoelectron spectroscopy and electrical conductivity measurements. The results indicate that Y2O3 nanoparticles are almost enwrapped by polypyrrole. The addition of Y2O3 nanoparticles results in changes in the surface structure and conductivity of the composite. Thermogravimetric analysis shows that composite has better thermal stability than that of pure polypyrrole.  相似文献   

10.
胡启昌  陈业青  吕佩文  黄丰  王娴 《中国物理 B》2014,23(2):26402-026402
Bismuth-containing semiconductor material is a hot topic in photocatalysts because of its effective absorption under the visible light.In this paper,we expect to explore a new bismuth-based photocatalyst by studying the subsolidus phase relations of the Bi2O3–Fe2O3–La2O3system.The X-ray diffraction data shows that in this ternary system the ternary compound does not exist,while seven binary compounds(including one solid solution series Bi1 xLaxO1.5with 0.167≤x≤0.339)are obtained and eight compatibility triangles are determined.  相似文献   

11.
The role of charge carriers in ZnO2/CuO2 planes of Cu0.5Tl0.5Ba2Ca3Cu4−yZnyO12−δ material in bringing about superconductivity has been explained. Due to suppression of anti-ferromagnetic order with Zn 3d10 (S=0) substitution at Cu 3d9 sites in the inner CuO2 planes of Cu0.5Tl0.5Ba2Ca3Cu4O12−δ superconductor, the distribution of charge carriers becomes homogeneous and optimum, which is evident from the enhanced superconductivity parameters. The decreased c-axis length with the increase of Zn doping improves interlayer coupling and hence the three dimensional (3D) conductivity in the unit cell is enhanced. Also the softening of phonon modes with the increased Zn doping indicates that the electron–phonon interaction has an essential role in the mechanism of high-Tc superconductivity in these compounds.  相似文献   

12.
We present the interferometric technique which allows to measure piezooptical and photoelastic characteristics of crystal materials of any symmetry. The offered two-fold interferometric method enables to determine all independent non-zero piezooptic and photoelastic constants by measuring pressure induced changes of optical path. As advantage to known acoustooptical techniques this method allows to measure both the absolute magnitude and sign of photoelastic constants. In general case the determination of 36 components of piezooptic tensor needs to carry out 57 measurements on 16 samples. The corresponding relationships are derived. As an example we apply here the interferometric technique to measure the piezooptic and photoelastic constants in trigonal β-BaB2O4 crystals.  相似文献   

13.
In this work, we used the hydrothermal method to synthesize Yb3+ and Tm3+ doped LaF3 nanostructures, which is an ultraviolet upconversion luminescent material. Two distinct shapes such as nanosheets, nanoparticles and bulk samples formed in the products by adjusting the concentrations of the surfactant of the reaction solution. Powder X-ray diffraction analysis showed that the products were pure hexagonal phase, while electron microscopy measurements confirm the formation of different morphologies. These nanostructures exhibit strong ultraviolet upconversion luminescence under the excitation of a 978-nm diode laser. In Yb3+ and Tm3+ codoped LaF3 materials, the relative intensity of ultraviolet and blue upconversion emissions became stronger as the size and morphology of sample changed from bulk to sheets.  相似文献   

14.
Transport properties of SrCe0.95Y0.05O3−δ were studied by impedance spectroscopy and by measuring open-cell voltage (OCV) and gas permeation. Ionic transference numbers were determined by measuring the OCV of concentration cells and water vapor evolution of an O2/H2 fuel cell. We observed interfacial polarization on the basis of the IV curves obtained by discharging a hydrogen concentration cell or an O2/H2 fuel cell. The observed high protonic conductivity (high proton and low oxide ion transference numbers) makes SrCe0.95Y0.05O3−δ a potential material for hydrogen separation. From proton conductivity measurements, under a given hydrogen partial pressure difference of 4%/0.488%, the hydrogen permeation rate (of a dense membrane with 0.11 cm in thickness) was calculated to be ≈0.072 cm3 (STP) cm−2 min−1 at 800°C, whereas the permeation rate calculated from short-circuit current measurements was ≈0.023 cm3 (STP) cm−2 min−1 at 800°C. The difference between calculated and observed permeation rates is probably due to interfacial polarization.  相似文献   

15.
Nanopowders of Zr0.95Ce0.05O2 composition have been prepared by a standard Pechini-type sol-gel process and by means of a colloidal crystal template approach. In the latter method, inverse opal Zr0.95Ce0.05O2 powders were fabricated employing poly(methyl methacrylate) (PMMA) colloidal crystals as a template. The effects of the two different synthesis routes on the structure and microstructural characteristics of the prepared nanopowders were evaluated by X-ray diffraction and scanning electron microscopy. For both preparation routes, the X-ray diffraction analysis has shown that a tetragonal fluorite structure is formed with a crystallite size of ∼35-40 nm. The scanning electron microscopy measurements indicate that the powder obtained by the sol-gel Pechini-type process is comprised of nanoparticles that are arranged in agglomerates with shape and size relatively uniform whereas the inverse opal Zr0.95Ce0.05O2 nanopowders exhibit the formation of macropores with a mean size of ∼100 nm. The cathodoluminescence spectra of the prepared Zr0.95Ce0.05O2 nanomaterials have been measured in the 300-800 nm wavelength range. The powder prepared by sol-gel method yields a broad emission band centered at 482 nm whereas the emission from the inverse opal preparation is considerably less intense.  相似文献   

16.
Firstly, the production of solid bulk specimens of the proton conductor Ba3Ca1.18Nb1.82O9 − gd (BCN18) of known water content up to [H.] = nH/nBa = 0.16 is described. Secondly, measuring the length change of such samples versus water content [H.] demonstrated that the sample lengths increased linearly with a slope of (Δl/l)/[H.] = (2.13 ±0.07) × 10−2. Thirdly, the density of bulk samples was found to decrease linearly with water content [H.]. This decrease was in good agreement with the above values derived from the length change. Fourthly, high temperature dilatometry showed that samples reach the thermodynamic solubility values in water vapor atmospheres only at temperatures above 700 °C. Two time scales were observed for the time-dependence of the elongation upon exposure to water vapor. A fast process occurred within minutes above 700 °C, a slow one took several hours. The fast one was identified as the chemical diffusion of the diffusion pair H. and Vo. which is required for the water uptake and loss of BCN18. The chemical diffusivity of water is described by the parameters D0 = (0.022 ± 0.002) cm2/s and ΔH* = (0.79 ± 0.05) eV.  相似文献   

17.
Ba(Ti1−x,Nix)O3 thin films were prepared on fused quartz substrates by a sol–gel process. X-ray diffraction and Raman scattering measurements showed that the films are of pseudo-cubic perovskite structure with random orientation and the change of lattice constant caused by Ni-doping with different concentrations is very small. Optical transmittance spectra indicated that Ni-doping has an obvious effect on the energy band structure. The energy gap of Ba(Ti1−x,Nix)O3 decreased linearly with the increase of Ni concentration. It indicates that the adjusting of band gap can be achieved by controlling the Ni-doping content accurately in Ba(Ti1−x,Nix)O3 thin films. This has potential application in devices based on ferroelectric thin films.  相似文献   

18.
Pure and WO3 doped CeO2-PbO-B2O3 glasses are prepared by the melt-quench technique. The structural and optical analyses of glasses are carried out by XRD, FTIR, density and UV-vis spectroscopic measurement techniques. FTIR analysis indicates the transformation of structural units of BO3 into BO4 with W-O-W vibration and the presence of WO4 and WO6 units observed with increase in WO3 contents. Decrease in band gap for CeO2-PbO-B2O3 glasses from 2.89 to 2.30 eV and for WO3 doped glasses from 2.89 to 1.95 eV has been observed and discussed. This decrease in band gap with WO3 doping approaches to semiconductor behavior. It shows that the presence of WO3 in the glass samples causes more compaction of the borate network due to the formation of BO4 groups and the presence of WO4 and WO6 groups, which result in a decrease in the optical band gap energy and increase in the density.  相似文献   

19.
We investigated the effects of added Tm2O3, Sc2O3, and Yb2O3 on the superconducting properties of sintered Er123 samples. Tm2O3 addition caused the least Tc degradation, exhibiting a Tc above 90 K even for 17 vol% addition. Samples with added Sc2O3 maintained a Tc at above 90 K up to an addition of 7.2 vol%, while Yb2O3-containing samples showed a monotonic decrease in Tc with increased vol% of added Yb2O3. Tm2O3-containing samples exhibited a slight increase in Jc(0.1 T)/Jc(0) and had constant Jc values even for 17 vol% addition. XRD and SEM results indicate that the Tm2O3 is very stable in the superconducting matrix.  相似文献   

20.
Bi(Fe0.95Co0.05)O3 films were prepared on conductive indium tin oxide (ITO)/glass substrates by chemical solution deposition. Well saturated polarization hysteresis loop has been observed with a remnant polarization value of about 22 μC/cm2 at room temperature. Weak ferromagnetism with saturation magnetization of about 3 emu/cm3 was observed at room temperature. The clear observation of both room temperature ferroelectric and ferromagnetic properties suggests the potential multiferroic applications of Bi(Fe0.95Co0.05)O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号