首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
郭勇  陈庆云 《化学学报》2001,59(10):1722-1729
二氟二碘甲烷(CF2I2,1)与乙烯基乙醚和Na2S2O4在DMSO和乙醇的混合溶剂中反应得3,3-二氟-3-碘丙醛的乙缩醛[ICF2CH2CH(OEt)2](3).3在锌粉的作用下发生偶联反应生成二缩醛[(EtO)2CHCH2CF2CF2CH2CH(OEt)2](5)。缩醛3或5与烯醇硅醚在SnCl4作用下发生交叉偶联反应。3在锌粉或保险粉的引下与烯醇硅醚发生加成反应。3和5分别转化成硫缩醛ICF2CH2CH(SR)2(13),(RS)2CHCH2CF2CF2CH2CH(SR)2(14)或O,S-缩醛。13消HI得1,1-二氟乙烯衍生物。  相似文献   

2.
The molybdenum(II) and tungsten(II) complexes [MCp(2)L] (Cp = eta(5)-cyclopentadienyl; L = C(2)H(4), CO) react with perfluoroalkyl iodides to give a variety of products. The Mo(II) complex [MoCp(2)(C(2)H(4))] reacts with perfluoro-n-butyl iodide or perfluorobenzyl iodide with loss of ethylene to give the first examples of fluoroalkyl complexes of Mo(IV), MoCp(2)(CF(2)CF(2)CF(2)CF(3))I (8) and MoCp(2)(CF(2)C(6)F(5))I (9), one of which (8) has been crystallographically characterized. In contrast, the CO analogue [MoCp(2)(CO)] reacts with perfluorobenzyl iodide without loss of CO to give the crystallographically characterized salt, [MoCp(2)(CF(2)C(6)F(5))(CO)](+)I(-) (10), and the W(II) ethylene precursor [WCp(2)(C(2)H(4))] reacts with perfluorobenzyl iodide without loss of ethylene to afford the salt [WCp(2)(CF(2)C(6)F(5))(C(2)H(4))](+)I(-) (11). These observations demonstrate that the metal-carbon bond is formed first. In further contrast the tungsten precursor [WCp(2)(C(2)H(4))] reacts with perfluoro-n-butyl iodide, perfluoro-iso-propyl iodide, and pentafluorophenyl iodide to give fluoroalkyl- and fluorophenyl-substituted cyclopentadienyl complexes WCp(eta(5)-C(5)H(4)R(F))(H)I (12, R(F) = CF(2)CF(2)CF(2)CF(3); 15, R(F) = CF(CF(3))(2); 16, R(F) = C(6)F(5)); the Mo analogue MoCp(eta(5)-C(5)H(4)R(F))(H)I (14, R(F) = CF(CF(3))(2)) is obtained in similar fashion. The tungsten(IV) hydrido compounds react with iodoform to afford the corresponding diiodides WCp(eta(5)-C(5)H(4)R(F))I(2) (13, R(F) = CF(2)CF(2)CF(2)CF(3); 18, R(F) = CF(CF(3))(2); 19, R(F) = C(6)F(5)), two of which (13 and 19) have been crystallographically characterized. The carbonyl precursors [MCp(2)(CO)] each react with perfluoro-iso-propyl iodide without loss of CO, to afford the exo-fluoroalkylated cyclopentadiene M(II) complexes MCp(eta(4)-C(5)H(5)R(F))(CO)I (21, M = Mo; 22, M = W); the exo-stereochemistry for the fluoroalkyl group is confirmed by an X-ray structural study of 22. The ethylene analogues [MCp(2)(C(2)H(4))] react with perfluoro-tert-butyl iodide to yield the products MCp(2)[(CH(2)CH(2)C(CF(3))(3)]I (25, M = Mo; 26, M = W) resulting from fluoroalkylation at the ethylene ligand. Attempts to provide positive evidence for fluoroalkyl radicals as intermediates in reactions of primary and benzylic substrates were unsuccessful, but trapping experiments with CH(3)OD (to give R(F)D, not R(F)H) indicate that fluoroalkyl anions are the intermediates responsible for ring and ethylene fluoroalkylation in the reactions of secondary and tertiary fluoroalkyl substrates.  相似文献   

3.
Reaction of Pd(TMEDA)(CH(3))(2) [TMEDA = tetramethylethylenediamine] with fluoroalkyl iodides R(F)I affords a series of square planar Pd(II) complexes Pd(TMEDA)(CH(3))(R(F)) [R(F) = CF(2)CF(3) (9), CFHCF(3) (10), CH(2)CF(3) (11)], presumably by oxidative addition followed by reductive elimination of CH(3)I. The solid-state structures of each compound have been determined by single crystal X-ray diffraction studies, allowing the effect of increasing alpha-fluorination on the structural trans-influence of alkyl ligands to be examined. In these compounds there is no significant difference observed in the trans-influence of the three fluorinated alkyl ligands toward the trans-N atom, although a significant cis-influence on the neighboring methyl ligand is apparent. Oxidative addition of the same series of fluoroalkyl ligands to the corresponding Pt(TMEDA)(CH(3))(2) affords octahedral Pt(IV) complexes trans-Pt(TMEDA)(CH(3))(2)(R(F))I [R(F) = CF(2)CF(3) (12), CFHCF(3) (13), CH(2)CF(3) (14)] as the kinetic products. In each case, subsequent isomerization to the corresponding all cis-isomers is observed; in the case of 13, the stereocenter at the alpha-carbon results in two diastereomeric cis-isomers, which are formed at different rates. The molecular structures of 13 and its more stable all cis-isomer 16b have been crystallographically determined. Kinetic studies of the trans-cis isomerization reactions show the mechanism to involve a polar transition state, presumably involving iodide dissociation, followed by rearrangement of the cation, and iodide recombination. High dielectric solvents increase the rate, but solvent coordinating ability has no effect. Dissolved salts (LiI, LiOTf) show normal accelerative salt effects, with no inhibition in the case of added iodide, consistent with the formation of an intimate ion pair intermediate. The kinetic parameters show that the trans-effects of fluoroalkyl ligands in these compounds follow the order expected from the relative sigma-donor properties of the ligands, with CF(2)CF(3) < CFHCF(3) < CH(2)CF(3).  相似文献   

4.
Syntheses of quaternary 1-alkyl-3-perfluoroalkyl-4,5-dimethyl-1,2,4-triazolium iodides have led to a variety of new quaternary salts via metathesis reactions. 1,4,5-Trimethyl-3-trifluoro-methyl-1,2,4-triazolium iodide (6) with LiN(SO(2)CF(3))(2), KSO(3)CF(3), AgClO(4), AgBF(4); 1-(3-fluoropropyl)-3-trifluoromethyl-4,5-dimethyl-1,2,4-triazolium iodide (7) with LiN(SO(2)CF(3))(2); and 1,4,5-trimethyl-3-perfluorooctyl-1,2,4-triazolium iodide (8) with LiN(SO(2)CF(3))(2), AgClO(4), AgBF(4) gave excellent yields of new thermally stable and relatively low melting quaternary salts. The structure of 1,4,5-trimethyl-3-perfluorooctyl-1,2,4-triazolium tetrafluoroborate (11c) was confirmed by single-crystal X-ray analysis. Although the molecular weight of 11c (cation) is 3-fold greater than that of the 3-trifluoromethyl derivative 9d, its melting point is 32 degrees C lower.  相似文献   

5.
Ordered mesoporous silicas with hexagonal or lamellar architectures incorporating covalently bound ionic species were synthesized via a template directed hydrolysis-polycondensation of tetraethoxysilane (TEOS) with triethoxysilylated imidazole [(EtO)(3)Si(CH(2))(3)-Im] or alkylimidazolium halides [(EtO)(3)Si(CH(2))(3)-Im(+)-R Hal(-)].  相似文献   

6.
Highly fluorinated epoxides react with halogens in the presence of nickel powder or CuI at elevated temperatures to provide a useful and general synthesis of dihalodifluoromethanes (CF(2)X(2)) and fluoroacyl fluorides (R(F)COF) in the absence of solvent. At 185 degrees C, hexafluoropropylene oxide and halogens produce CF(2)X(2) (X = I, Br) in 68-90% isolated yields, along with small amounts of X(CF(2))(n)()X, (n = 2, 3). With interhalogens I-X (X = Cl, Br), a mixture of CF(2)I(2), CF(2)XI, and CF(2)X(2) was obtained. The fluorinated epoxides substituted with perfluorophenyl, fluorosulfonyl, and chlorofluoroalkyl groups also react cleanly with iodine to give CF(2)I(2) and the corresponding fluorinated acyl fluorides in good yields. The reaction probably involves an oxidative addition of fluorinated epoxides into metal surfaces to form an oxametallacycle, followed by rapid decomposition to difluorocarbene-metal surfaces, which alters the reactivity of the difluorocarbene carbon from electrophilic to nucleophilic. The increase of nucleophilicity of difluorocarbene facilitates the reaction with electrophilic halogens. CF(2)I(2) reacted with olefins thermally to give 1,3-diiodofluoropropane derivatives. Both fluorinated and nonfluorinated alkenes gave good yields of the adducts. Reaction with ethylene, propylene, perfluoroalkylethylene, vinylidene fluoride, and trifluoroethylene provided the corresponding adducts in 58-86% yields. With tetrafluoroethylene, a 1:1 adduct was predominantly formed along with small amounts of higher homologues. In contrast to perfluoroalkyl iodides, CF(2)I(2) also readily adds to perfluorovinyl ethers to give 1,3-diiodoperfluoro ethers.  相似文献   

7.
The first quaternary salts of pyridine (2), N-methyl imidazole (3), N-propyl triazole (4), and pyridazine (5) that contain the pentafluorosulfanyl (SF(5)) group were prepared and characterized. Neat reactions of the aromatic nitrogen compounds with SF(5)(CF(2))(n)(CH(2))(m)I (n = 2 or 4, m = 2 or 4) gave quaternary iodides 6a-c, 7a-c, 8a, and 9a,b, which were metathesized with LiN(SO(2)CF(3))(2) to form the bis(trifluoromethylsulfonyl)amides 10a-c, 11a-c, 12a, and 13a,b, in high yields. With the exception of the pyridine bis(trifluoromethylsulfonyl)amide salts, the compounds melted or exhibited a T(g) at <0 degrees C. The methylimidazolium, pyridinium, and pyridazinium salts exhibited densities of approximately 2 g/cm(3). Particularly striking was the density of CF(3)(CF(2))(5)(CH(2))(2)-pyridazinium N(CF(3)SO(2))(2) measured at 2.13 g/cm(3); however, an atypically high density for the 1-CF(3)(CF(2))(5)(CH(2))(2)-3-methyl imidazolium amide (14) was also observed at 1.77 g/cm(3). All quaternary salts were characterized via IR, (19)F, (1)H, and (13)C NMR spectra and elemental analyses.  相似文献   

8.
Four new potentially polytopic nitrogen donor ligands based on the 1,3,5-triazine fragment, L(1)-L(4) (L(1) = 2-chloro-4,6-di(1H-pyrazol-1-yl)-1,3,5-triazine, L(2) = N,N'-bis(4,6-di(1H-pyrazol-1-yl)-1,3,5-triazin-2-yl)ethane-1,2-diamine, L(3) = 2,4,6-tris(tri(1H-pyrazol-1-yl)methyl)-1,3,5-triazine, and L(4) = 2,4,6-tris(2,2,2-tri(1H-pyrazol-1-yl)ethoxy)-1,3,5-triazine) have been synthesized and characterized. The X-ray crystal structure of L(3) confirms that its molecular nature consists of a 1,3,5-triazine ring bearing three tripodal tris(pyrazolyl) arms. L(1), L(2), and L(4) react with Cu(I), Cu(II), Pd(II) and Ag(I) salts yielding mono-, di-, and oligonuclear derivatives: [Cu(L(1))(Cy(3)P)]ClO(4), [{Ag(2)(L(2))}(CF(3)SO(3))(2)]·H(2)O, [Cu(2)(L(2))(NO(3))(2)](NO(3))(2)·H(2)O, [Cu(2)(L(2))(CH(3)COO)(2)](CH(3)COO)(2)·3H(2)O, [Pd(2)(L(2))(Cl)(4)]·2H(2)O, [Ru(L(2))(Cl)(OH)]·CH(3)OH, [Ag(3)(L(4))(2)](CF(3)SO(3))(3) and [Ag(3)(L(4))(2)](BF(4))(3). The interaction of L(3) with Ag(I), Cu(II), Zn(II) and Ru(II) complexes unexpectedly produced the hydrolysis of the ligand with formation, in all cases, of tris(pyrazolyl)methane (TPM) derivatives. In detail, the already known [Ag(TPM)(2)](CF(3)SO(3)) and [Cu(TPM)(2)](NO(3))(2), as well as the new [Zn(TPM)(2)](CF(3)SO(3))(2) and [Ru(TMP)(p-cymene)]Cl(OH)·2H(2)O complexes have been isolated. Single-crystal XRD determinations on the latter derivatives confirm their formulation, evidencing, for the Ru(II) complex, an interesting supramolecular arrangement of the anions and crystallization water molecules.  相似文献   

9.
Five silver(I) double salts containing embedded acetylenediide, [Ag([12]crown-4)(2)][Ag(10)(C(2))(CF(3)CO(2))(9)([12]crown-4)(2)(H(2)O)(3)] x H(2)O (2), [Ag(2)C(2) x 5 AgCF(3)CO(2) x (benzo[15]crown-5) x 2 H(2)O] x 0.5 H(2)O (3), [Ag(4)([18]crown-6)(4)(H(2)O)(3)][Ag(18)(C(2))(3)(CF(3)CO(2))(16)(H(2)O)(2.5)] x 2.5 H(2)O (4), [Ag(2)C(2) x 6 AgC(2)F(5)CO(2) x 2([15]crown-5)](2) (5), and [(Ag(2)C(2))(2) x (AgC(2)F(5)CO(2))(9) x ([18]crown-6)(2) x (H(2)O)(3.5)] x H(2)O (6), have been isolated by varying the types of crown ethers and anions employed. Single-crystal X-ray analysis has shown that complex 2 is composed of winding anionic chains with sandwiched [Ag([12]crown-4)(2)](+) ions accommodated in the concave cavities between them. In 3, silver(I) double cages each sandwiched by a couple of benzo[15]crown-5 ligands are linked by [Ag(2)(CF(3)CO(2))(2)] bridges to form a one-dimensional structure. For 4, an anionic silver column is generated through fusion of two kinds of silver polyhedra (triangulated dodecahedron and bicapped trigonal antiprism), and the charge balance is provided by aqua-ligated [Ag([18]crown-6)](+) ions. Complex 5 is a centrosymmetric hexadecanuclear supermolecule composed of two [(eta(5)-[15]crown-5)(2)(C(2)@Ag(7))(mu-C(2)F(5)CO(2))(5)] moieties connected through a [Ag(2)(C(2)F(5)CO(2))(2)] bridge. Compound 6 is a discrete supermolecule containing an asymmetric (C(2))(2)@Ag(13) cluster core capped by two [18]crown-6 ligands in mu(3)-eta(5) and mu(4)-eta(6) ligation modes.  相似文献   

10.
Substitution of the methyl group from the H-BPMP (HL(CH)3) ligand (2,6-bis[(bis(2-pyridylmethyl)amino)methyl]-4-methylphenol) by electron withdrawing (F or CF(3)) or electron donating (OCH(3)) groups afforded a series of dinucleating ligand (HL(OCH)3, HL(F), HL(CF)3), allowing one to understand the changes in the properties of the corresponding dicopper complexes. Dinuclear Cu(II) complexes have been synthesized and characterized by spectroscopic (UV-vis, EPR, (1)H NMR) as well as electrochemical techniques and, in some cases, by single-crystal X-ray diffraction: [Cu(2)(L(OCH)3)(muOH)][(ClO(4))(2)].C(4)H(8)O, [Cu(2)(L(F))(muOH)][(ClO(4))(2)], [Cu(2)(L(F))(H(2)O)(2)][(ClO(4))(3)].C(3)D(6)O, and [Cu(2)(L(CF)3)(H(2)O)(2)][(ClO(4))(3)].4H(2)O. Significant differences are observed for the Cu-Cu distance in the two mu-hydroxo complexes (2.980 A (R = OCH(3)) and 2.967 A (R = F)) compared to the two bis aqua complexes (4.084 A (R = F) and 4.222 A (R = CF(3))). The mu-hydroxo and bis aqua complexes are reversibly interconverted upon acid/base titration. In basic medium, new species are reversibly formed and identified as the bis hydroxo complexes except for the complex from HL(CF)3 which is irreversibly transformed near pH = 10. pH-driven interconversions have been studied by UV-vis, EPR, and (1)H NMR, and the corresponding pK are determinated. In addition, with the fluorinated complexes, the changes in the coordination sphere around the copper centers and in their redox states are evidenced by the fluorine chemical shift changes ((19)F NMR). For all the complexes described here, investigations of the catechol oxidase activities (oxidation of 3,5-di-tert-butylcatechol to the corresponding quinone) are of interest in modeling the catecholase enzyme active site and in understanding aspects of structure/reactivity. These studies show the pH-dependence for the catalytic abilities of the complexes, related with changes in the coordination sphere of the metal centers: only the mu-hydroxo complexes from HL(CH)3, HL(F), and HL(OCH)3 exhibit a catecholase activity. Modification on R-substituent induces a drastic effect on the catecholase activity: the presence of an electron donating group on the ligand increases this activity; the reverse effect is observed with an electron withdrawing group.  相似文献   

11.
In the superacidic HF/SbF(5) system, methyl trifluoromethyl ether forms at -78 degrees C the new tertiary oxonium salt [(CH(3))(2)OCF(3)](+)[Sb(2)F(11)](-), which was characterized by Raman and multinuclear NMR spectroscopy and its crystal structure. The same oxonium salt was also obtained by methylation of CH(3)OCF(3) with CH(3)F and SbF(5) in HF solution at -30 to -10 degrees C. Replacement of one methyl group in the trimethyloxonium cation by the bulkier and more electronegative trifluoromethyl group increases the remaining O-CH(3) bond lengths by 0.037(1) A and the sum of the C-O-C bond angles by about 4.5 degrees. Methylation of CH(3)OCF(CF(3))(2) with CH(3)F in HF/SbF(5) solution at -30 degrees C produces [(CH(3))(2)OCF(CF(3))(2)](+)[Sb(2)F(11)](-). The observed structure and vibrational and NMR spectra were confirmed by theoretical studies at the B3LYP/6-311++G(2d,2p) and the MP2/6-311++G(2d,p) levels.  相似文献   

12.
2-Hydroxymethyl-2-methyl-1,3-propanediol (A) was reacted with (Me(3)Si)(2)NH and toluenesulfonyl chloride (TsCl) to give mainly CH(3)C(CH(2)OSiMe(3))(3) (1), and CH(3)C(CH(2)OTs)(3) (2), respectively. With allyl bromide, the products were CH(3)C(CH(2)OCH(2)CH[double bond]CH(2))(2)(CH(2)OH) (3) and CH(3)C(CH(2)OCH(2)CH[double bond]CH(2))(CH(2)OH)(2) x H(2)O (4). The reactions of 4 with perfluoroalkyl iodides (R(f)I) were catalyzed by Cu(I)Cl to form 2-methyl-2-polyfluoroalkenyloxymethyl-1,3-propanediols: (R(f)CH=CHCH(2)OCH(2))C(Me)(CH(2)OH)(2) [R(f) = C(4)F(9) (5), C(8)F(17) (6), and (CF(2)CF(2))(4)OCF(CF(3))(2) (7)]. Reduction of 5 and 6 with hydrogen gave two new 2-methyl-2-polyfluoroalkyloxymethyl-1,3-propanediols, 8 and 9. The sodium salt of 9 was reacted with allyl bromide or acetyl chloride to form (C(8)F(17)CH(2)CH(2)CH(2)OCH(2))C(Me)(CH(2)OX)(CH(2)OH)(2) [where X = CH(2)CH=CH(2) (10) or C(O)CH(3) (12)] and (C(8)F(17)CH(2)CH(2)CH(2)OCH(2))C(Me)(CH(2)OX)(2) [where X = CH(2)CH[double bond]CH(2) (11) or C(O)CH(3) (13)]. Reaction of tolenesulfonyl chloride with 7 gave the monotosylate, 14, as the sole product. With 4-trifluoromethylbenzyl bromide, the sodium salt of 4 gave (4-CF(3)C(6)H(4)CH(2)OCH(2))C(Me)(CH(2)CH[double bond]CH(2))(CH(2)OH) x H(2)O (15). The compounds were characterized by NMR ((1)H, (13)C, (19)F, (29)Si), GC-MS, and high-resolution MS or elemental analyses. UV evidence was obtained for partitioning of 9, 12, 14, and 15 between perfluorodecalin and n-octanol. The test compounds acted as surfactants by facilitating the solubility of phenol and Si(CH[double bond]CH(2))(4) in perfluorodecalin. The single-crystal X-ray structure of 8 was also obtained. It crystallized in the monoclinic space group P2(1)/c, and unit cell dimensions were a = 24.966(2) A (alpha = 90), b = 6.1371(6) A (beta = 100.730(2)), and c = 10.5669(10) A (gamma = 90).  相似文献   

13.
NO[Al(OC(CF(3))(2)Ph)(4)] 1 and NO[Al(OC(CF(3))(3))(4)] 2 were obtained by the metathesis reaction of NO[SbF(6)] and the corresponding Li[Al(OR)(4)] salts in liquid sulfur dioxide solution in ca 40% (1) and 85% (2) isolated yield. 1 and 2, as well as Li[NO(3)] and N(2)O, were also given by the reaction of an excess of mixture of (90 mol%) NO, (10 mol%) NO(2) with Li[Al(OR)(4)] followed by extraction with SO(2). The unfavourable disproportionation reaction of 2NO(2)(g) to [NO](+)(g) and [NO(3)](-)(g)[DeltaH degrees = +616.2 kJ mol(-1)] is more than compensated by the disproportionation energy of 3NO(g) to N(2)O(g) and NO(2)(g)[DeltaH degrees =-155.4 kJ mol(-1)] and the lattice energy of Li[NO(3)](s)[U(POT)= 862 kJ mol(-1)]. Evidence is presented that the reaction proceeds via a complex of [Li](+) with NO, NO(2)(or their dimers) and N(2)O. NO(2) and Li[Al(OC(CF(3))(3))(4)] gave [NO(3)(NO)(3)][Al(OC(CF(3))(3))(4)](2), NO[Al(OC(CF(3))(3))(4)] and (NO(2))[Al(OC(CF(3))(3))(4)] products. The aluminium complex [Li[AlF(OC(CF(3))(2)Ph)(3)]](2) 3 was prepared by the thermal decomposition of Li[Al(OC(CF(3))(2)Ph)(4)]. Compounds 1 and 3 were characterized by single crystal X-ray structural analyses, 1-3 by elemental analyses, NMR, IR, Raman and mass spectra. Solid 1 contains [Al(OC(CF(3))(2)Ph)(4)](-) and [NO](+) weakly linked via donor acceptor interactions, while in the SO(2) solution there is an equilibrium between the associated [NO](+)[Al(OC(CF(3))(2)Ph)(4)](-) and separated solvated ions. Solid 2 contains essentially ionic [NO](+) and [Al(OC(CF(3))(3))(4)](-). Complex 3 consists of two [Li[AlF(OC(CF(3))(2)Ph)(3)]] units linked via fluorine lithium contacts. Compound 1 is unstable in the SO(2) solution and decomposes to yield [AlF(OC(CF(3))(2)Ph)(3)](-), [(PhC(CF(3))(2)O)(3)Al(mu-F)Al(OC(CF(3))(2)Ph)(3)](-) anions as well as (NO)C(6)H(4)C(CF(3))(2)OH, while compound 2 is stable in liquid SO(2). The [small nu](NO(+)) in 1 and [NO](+)(toluene)[SbCl(6)] are similar, implying similar basicities of [Al(OC(CF(3))(2)Ph)(4)](-) and toluene.  相似文献   

14.
Zhao XL  Wang QM  Mak TC 《Inorganic chemistry》2003,42(24):7872-7876
Four new silver(I) double salts (L(2)H)(4)[Ag(10)(C(2))(CF(3)CO(2))(12)(L)(2)].5H(2)O (1), [Ag(8)(C(2))(CF(3)CO(2))(6)(L)(6)] (2), [(Ag(2)C(2))(AgC(2)F(5)CO(2))(6)(L)(3)(H(2)O)].H(2)O (3), and (L.H(3)O)(2)[Ag(11)(C(2))(2)(C(2)F(5)CO(2))(9)(H(2)O)(2)].H(2)O (4) incorporating the hitherto unexplored ligand 4-hydroxyquinoline (L) have been synthesized by the hydrothermal method. Compound 1 features an unprecedented bicapped square-antiprismatic Ag(10) silver cage with an embedded C(2)(2-) moiety, whereas the discrete supermolecule 2 bears a rhombohedral Ag(8) core similar to that previously found in Ag(2)C(2).6AgNO(3). Compound 3 contains a discrete supramolecular complex whose core is a (C(2))(2)@Ag(16) double cage constructed from the edge-sharing of two monocapped square antiprisms, which is completely surrounded by 12 pentafluoropropionate, 6 4-hydroxyquinoline, and 2 aqua ligands. The layer structure in 4 is constructed from a sinuous anionic silver column composed of fused irregular monocapped trigonal antiprisms each encapsulating a C(2)(2-) dianion, with L.H(3)O(+) species serving as hydrogen-bond connectors to adjacent columns.  相似文献   

15.
A variety of inter- and intramolecular dehydration was found in the reactions of [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)(mu-S(2))](CF(3)SO(3))(4) (1) with hydroxyl substituted alkenes and alkynes. Treatment of 1 with allyl alcohol gave a C(3)S(2) five-membered ring complex, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCH(2)CH(2)CH(OCH(2)CH=CH(2))S]](CF(3)SO(3))(4) (2), via C-S bond formation after C-H bond activation and intermolecular dehydration. On the other hand, intramolecular dehydration was observed in the reaction of 1 with 3-buten-1-ol giving a C(4)S(2) six-membered ring complex, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2) [mu-SCH(2)CH=CHCH(2)S]](CF(3)SO(3))(4) (3). Complex 1 reacts with 2-propyn-1-ol or 2-butyn-1-ol to give homocoupling products, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCR=CHCH(OCH(2)C triple bond CR)S]](CF(3)SO(3))(4) (4: R = H, 5: R = CH(3)), via intermolecular dehydration. In the reaction with 2-propyn-1-ol, the intermediate complex having a hydroxyl group, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCH=CHCH(OH)S]](CF(3)SO(3))(4) (6), was isolated, which further reacted with 2-propyn-1-ol and 2-butyn-1-ol to give 4 and a cross-coupling product, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCH=CHCH(OCH(2)C triple bond CCH(3))S]](CF(3)SO(3))(4) (7), respectively. The reaction of 1 with diols, (HO)CHRC triple bond CCHR(OH), gave furyl complexes, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SSC=CROCR=CH]](CF(3)SO(3))(3) (8: R = H, 9: R = CH(3)) via intramolecular elimination of a H(2)O molecule and a H(+). Even though (HO)(H(3)C)(2)CC triple bond CC(CH(3))(2)(OH) does not have any propargylic C-H bond, it also reacts with 1 to give [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCH(2)C(=CH(2))C(=C=C(CH(3))(2))]S](CF(3)SO(3))(4) (10). In addition, the reaction of 1 with (CH(3)O)(H(3)C)(2)CC triple bond CC(CH(3))(2)(OCH(3)) gives [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(2)][mu-S=C(C(CH(3))(2)OCH(3))C=CC(CH(3))CH(2)S][Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)]](CF(3)SO(3))(4) (11), in which one molecule of CH(3)OH is eliminated, and the S-S bond is cleaved.  相似文献   

16.
The first heterobimetallic Bi:Sn alkoxide complexes [Bi(2)SnO(OCH(CF(3))(2))(5)(O(t)Bu)(3)(THF)] (1) and [BiSnO(OCH(CF(3))(2))(3)(O(t)Bu)(2)](2) (2) are described. The complexes were obtained through mixing and heating equimolar quantities of the component alkoxides, Bi(OCH(CF(3))(2))(3) and Sn(O(t)Bu)(4), under solvent-free conditions (1) and in THF (2). The solid-state structures were determined by single crystal X-ray diffraction showing ligand redistribution from Bi(III) to Sn(IV) in the two molecular species. Compound 2 behaves as a single-source precursor for the thermolytic formation of bismuth pyrostannate, Bi(2)Sn(2)O(7).  相似文献   

17.
Maayan G  Fish RH  Neumann R 《Organic letters》2003,5(20):3547-3550
[reaction: see text] Polyfluorinated quaternary ammonium cations, [CF(3)(CF(2))(7)(CH(2))(3)](3)CH(3)N(+) (R(F)N(+)), were synthesized and used as countercations for the [WZnM(2)(H(2)O)(2)(ZnW(9)O(34))(2)](12)(-) (M = Mn(II), Zn(II)) polyoxometalate. The (R(F)N(+))(12)[WZnM(2)(H(2)O)(2)(ZnW(9)O(34))(2)] compounds were fluorous biphasic catalysts for alcohol and alkenol oxidation, and alkene epoxidation with aqueous hydrogen peroxide. Reaction protocols with or without a fluorous solvent were tested. The catalytic activity and selectivity was affected by both the hydrophobicity of the solvent and the substrate.  相似文献   

18.
考察了5-氢-3-氧杂-1,1,2,2,4,4,5,5-八氟戊烷磺酰氟(HCF2CF2OCF2CF2SO2F)和全乙酰基保护的吡喃型半缩醛单糖在有机碱存在下的氟代反应.实验结果表明,氟烷基磺酰氟试剂HCF2CF2OCF2CF2SO2F能够诱导全乙酰基保护的吡喃型半缩醛单糖发生氟代反应而生成相应的氟代糖苷,得率44%~94%.该方法具有反应条件温和和后处理简便等优点,可作为一种有效的方法用于氟代糖苷的制备中.  相似文献   

19.
Reaction of 3,5-(CF(3))(2)PzLi with [Rh(μ-Cl)(η(2)-C(2)H(4))(2)](2) or [Rh(μ-Cl)(PMe(3))(2)](2) in Et(2)O gave the dinuclear complexes [Rh(η(2)-C(2)H(4))(2)(μ-3,5-(CF(3))(2)-Pz)](2) (1) and [Rh(2)(μ-Cl)(μ-3,5-(CF(3))(2)-Pz) (PMe(3))(4)] (2) respectively (3,5-(CF(3))(2)Pz = bis-trifluoromethyl pyrazolate). Reaction of PMe(3) with [Rh(COD)(μ-3,5-(CF(3))(2)-Pz)](2) in toluene gave [Rh(3,5-(CF(3))(2)-Pz)(PMe(3))(3)] (3). Reaction of 1 and 3 in toluene (1?:?4) gave moderate yields of the dinuclear complex [Rh(PMe(3))(2)(μ-3,5-(CF(3))(2)-Pz)](2) (4). Reaction of 3,5-(CF(3))(2)PzLi with [Rh(PMe(3))(4)]Cl in Et(2)O gave the ionic complex [Rh(PMe(3))(4)][3,5-(CF(3))(2)-Pz] (5). Two of the complexes, 1 and 3, were studied for use as CVD precursors. Polycrystalline thin films of rhodium (fcc-Rh) and metastable-amorphous films of rhodium phosphide (Rh(2)P) were grown from 1 and 3 respectively at 170 and 130 °C, 0.3 mmHg in a hot wall reactor using Ar as the carrier gas (5 cc min(-1)). Thin films of amorphous rhodium and rhodium phosphide (Rh(2)P) were grown from 1 and 3 at 170 and 130 °C respectively at 0.3 mmHg in a hot wall reactor using H(2) as the carrier gas (7 cc min(-1)).  相似文献   

20.
A cationic, pentanuclear aluminium phosphonate cage, [L(4)Al(5)Cl(6)(THF)(6)]Cl, 1, supported by (phthalimidomethyl) phosphonate, (L), has been synthesized and characterized. This polynuclear cage features the phosphonate ligand in an unusual coordination mode, supporting five aluminium atoms in two different environments. In comparison, the aqueous reaction of LH(2) with In(ClO(4))(3) afforded [{(LH)In(H(2)O)}(H(2)O)(2)(ClO(4))](n), 2, an indium(iii) phosphonate coordination polymer, that has been crystallographically characterized. Reactions of the corresponding phosphonate ester, diethyl (phthalimidomethyl) phosphonate, (L'), with GaI(3) and InCl(3) afforded the simple coordination complexes, [L'·GaI(3)], 3, and [L'·InCl(3)(THF)], 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号