首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tumor-associated carbohydrate antigens Globo-H, SSEA-3, and Gb3 were synthesized in a linear fashion using glycosyl phosphate monosaccharide building blocks. All of the building blocks were prepared from readily available common precursors. The difficult alpha-(1-->4-cis)-galactosidic linkage was installed using a galactosyl phosphate donor with high selectivity. Introduction of the beta-galactosamine unit required the screening a variety of amine protecting groups to ensure good donor reactivity and protecting group compatibility. An N-trichloroacetyl-protected galactosamine donor performed best for the installation of the beta-glycosidic linkage. Conversion of the trichloroacetyl group to the N-acetyl group was achieved under mild conditions, fully compatible with the presence of multiple glycosidic bonds. This synthetic strategy is expected to be amenable to the synthesis of the globo-series of tumor antigens on solid-support.  相似文献   

2.
Centrifugal partition chromatography (CPC) was applied to separate amphiphilic glycolipids and pseudo-glycolipids synthesized by using cells. Neutral and acidic lipid fractions were isolated by CPC under suitable conditions respectively. Separation of neutral lipid, Gb3-type and Gb4-type oligosaccharide synthesized by using cells, was performed with a two-phase solvent system composed of chloroform-methanol-water at a volume ratio of 5:6:4. On the other hand, separation of acidic lipid, GM3-type oligosaccharide synthesized by using cells, and ganglioside extracted from rat brain were performed with a two-phase solvent system composed of butanol-ethanol-1% acetic acid at a volume ratio of 4:1:5. 8.3mg of Gb3 analogue, 5.1mg of Gb4 analogue, and 19.5mg of GM3 analogue were purified from 3.2l of culture medium obtained by incubation of African green-monkey kidney (Vero) cells with 50 microM n-dodecyl beta-lactoside using CPC.  相似文献   

3.
Shiga toxin (Stx, synonymous to verotoxin, VT) binds with high and low affinity to the globo‐series neutral glycosphingolipids (GSLs), globotriaosylceramide (Gb3Cer or Galα4Galβ4Glcβ1Cer, also known as CD77) and globotetraosylceramide (Gb4Cer or GalNAcβ3Galα4Galβ4Glcβ1Cer), respectively, which represent the targets of Stxs on many different cell types. B‐cell‐derived Raji cells and THP‐1 cells of monocytic origin are widely used for the investigation of Stx‐mediated cellular response, because Stx is known to cause cell death in both cell lines. Despite their functional importance, the Stx receptors of Raji and THP‐1 cells have so far not been investigated. This prompted us to explore the structures of their GSL receptors in detail by means of nanoelectrospray ionization quadrupole time‐of‐flight mass spectrometry (nanoESI‐QTOF‐MS) with collision‐induced dissociation (CID) in conjunction with Stx1 as well as anti‐Gb3Cer and anti‐Gb4Cer antibodies. Using the combination of a thin‐layer chromatography (TLC) overlay assay and MS1 and MS2 analysis we identified Gb3Cer (d18:1, C24:1/C24:0) as the prevalent Stx1‐receptor accompanied by less abundant Gb3Cer (d18:1, C16:0) in the neutral GSL fraction of Raji cells. The same Gb3Cer species but with almost equal proportions of the C24:1/C24:0 and C16:0 variants were found in THP‐1 cells. In addition, unusual hydroxylated Gb3Cer (d18:1, C24:1/C24:0) and Gb3Cer (d18:1, C26:1) could be identified in trace quantities in both cell lines. As the most obvious difference between Raji and THP‐1 cells we observed the expression of Gb4Cer in THP‐1 cells, whereas Raji cells failed to express this elongation product of Gb3Cer. Both short‐ and long‐chain fatty acid carrying Gb4Cer (d18:1, C16:0) and Gb4Cer (d18:1, C24:1/C24:0), respectively, were the prevalent Gb4Cer variants. This first report on the differential expression of Gb3Cer and Gb4Cer and their structural diversity in lymphoid and myeloid cell lines supports the hypothesis that such heterogeneities might play a functional role in the molecular assembly of GSLs in membrane organization and cellular signaling of Stx‐susceptible cells. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Sialic‐acid‐binding, immunoglobulin‐type lectin‐7 (Siglec‐7) is present on the surface of natural killer cells. Siglec‐7 shows preference for disialylated glycans, including α(2,8)‐α(2,3)‐disialic acids or internally branched α(2,6)‐NeuAc, such as disialosylglobopentaose (DSGb5). Herein, DSGb5 was synthesized by a one‐pot multiple enzyme method from Gb5 by α2,3‐sialylation (with PmST1) followed by α2,6‐sialylation (with Psp2,6ST) in 23 % overall yield. DSGb5 was also chemoenzymatically synthesized. The protection of the nonreducing‐end galactose of Gb5 as 3,4‐O‐acetonide, 3,4‐O‐benzylidene, and 4,6‐O‐benzylidene derivatives provided DSGb5 in overall yields of 26 %, 12 %, and 19 %, respectively. Gb3, Gb4, and Gb5 were enzymatically sialylated to afford a range of globo‐glycans. Surprisingly, DSGb5 shows a low affinity for Siglec‐7 in a glycan microarray binding affinity assay. Among the synthesized globo‐series glycans, α6α3DSGb4 shows the highest binding affinity for Siglec‐7.  相似文献   

5.
The zirconium‐mediated synthesis of a new class of air‐stable spirocyclic germafluorene–germole (SGG) luminogens is reported. These species contain ring‐fused germafluorene and germole units that display color‐tunable fluorescence when peripheral aryl substituents are appended. Three distinct pathways are introduced for SGG modification (Stille, Suzuki–Miyaura, and zirconocene‐mediated couplings), which enable the preparation of new libraries of molecular and polymeric SGG light‐emitters with tunable luminescence and desirable thermal‐ and photo‐stability.  相似文献   

6.
An efficient and convenient synthesis of 2-amino-6-aryl-4-methylsulfanylnicotinonitriles (2), 2-amino-6-aryl-4-substituted-aminonicotinonitriles (4), and 2-amino-6-aryl-4-substituted-aminopyridines (6) has been delineated and illustrated through base-catalyzed ring transformation of 6-aryl-3-cyano-4-methylsulfanyl/substituted-amino-2H-pyran-2-ones (1, 3, and 5) with cyanamide and ammonium carbonate separately.  相似文献   

7.
In the course of comparing the reaction chemistry of (C5Me5)3U, 1, and its slightly less crowded analogue (C5Me4H)3U, 2, new syntheses of UI3, (C5Me4H)3U, (C5Me4H)3UCl, 3, and (C5Me5)3UCl, 4, have been developed. Additionally, (C5Me4H)3UI, 5, and (C5Me4H)2UCl2, 6, have been identified for the first time. A facile synthesis of unsolvated UI3 is reported that proceeds in high yield with inexpensive equipment from iodine and hot uranium turnings. Both UI3 and UI3(THF)4 react with KC5Me4H in toluene to make unsolvated (C5Me4H)3U in higher yield than in previous reports that involve reduction of tetravalent (C5Me4H)3UCl, 3. A more atom-efficient synthesis of complex 3 is also reported that proceeds from reduction of t-BuCl, PhCl, or HgCl2 by 2. Similarly, (C5Me4H)3U reacts with PhI or HgI2 to generate (C5Me4H)3UI. These studies also provided a basis to improve the synthesis of (C5Me5)3UCl from 1 by employing t-BuCl or HgCl2 as the halide source. Like (C5Me5)3UCl, the (C5Me4H)3UCl complex reacts with HgCl2 to form (C5Me4H)2 and (C5Me4H)2UCl2, 6, but unlike (C5Me5)3UX (X = Cl or I), the less substituted (C5Me4H)3UX complexes do not reduce t-BuCl or PhX. The synthesis of 6 from (C5Me4H)MgCl x THF and UCl4 is also included.  相似文献   

8.
The synthesis of (2S,5R)-5-hydroxy-6-oxo-1,2-piperidinedicarboxylates (5) and related (3S,6R)-3-hydroxy-6-alkyl-2-oxo-1-piperidinecarboxylates has been developed. The approach is based on the asymmetric hydroxylation of enolates generated from the corresponding N-protected-6-substituted piperidin-2-ones. The utility of 5a as a precursor in the synthesis of (2S,5R)-5-hydroxylysine (1), an amino acid unique to collagen and collagen-like proteins, has also been demonstrated. (2S)-6-oxo-1,2-piperidinedicarboxylates (6) required for hydroxylation studies were prepared in 38-74% yield, starting from conveniently protected aspartic acid as inexpensive chiral adduct. Hydroxylation of 6 to 5 proceeds in high yield and excellent diastereoselectivity by treatment of their Li-enolate with (+)-camphorsulfonyloxaziridine at -78 degrees C. Ring opening of di-tert-butyl (2S,5R)-6-oxo-1,2-piperidinedicarboxylate ((5R)-5a) under reductive conditions afforded the corresponding 1,2-diol (17) in 91%, which was further transformed to (2S,5R)-5-hydroxylysine in four steps (84%). 17 is also a versatile intermediate in the preparation of tert-butyl (2S,5R)-2-[(tert-butoxycarbonyl)amino]-5-hydroxy-6-iodohexanoate (3) and tert-butyl (2S)-2-[(tert-butoxycarbonyl)amino]-4-[(2R)-oxiranyl]butanoate (4), two amino acid derivatives used in the total synthesis of the bone collagen cross-link (+)-pyridinoline (2a).  相似文献   

9.
A convenient, large-scale synthesis of the antibiotic pyoluteorin, 2,3-dichloro-5-(2′,6′-dihydroxybenzoyl)-pyrrole ( 1 ), is described. A key step in the synthesis involved a Friedel-Crafts aroylation of pyrrole with 2,6-dimethoxybenzoyl chloride ( 3 ) in methylene chloride. The desired intermediate, 2-(2′,6′-dimethoxybenzoyl)pyrrole ( 4 ), was obtained as the major product, along with a product of beta substitution ( 6 ). Compound 4 was converted to pyoluteroin ( 1 ) in four steps in an overall yield of 51%.  相似文献   

10.
A general methodology for the synthesis of highly substituted butyrolactones in enantiomerically pure form has been developed. The application of this process in a highly efficient synthesis of lactone natural products blastmycinone (1), NFX-2 (2), antimycinone (3), and NFX-4 (4) and two lipid metabolites (5, 6) are described. Additionally, the total synthesis of 5-epi-blastmycinone (22), 5-epi-NFX-2 (21b), 5-epi-NFX-4 (21c), and lipid metabolite analogs (19, 20) are also described. The overall yields for the target molecules are the highest reported so far in the literature.  相似文献   

11.
A new oxidation-based synthetic route was developed for synthesis of Cu(I) complexes with weakly coordinating ligands, leading to the synthesis of the elusive [Cu(dtbp)2]+ (dtbp, 2,9-di-tert-butyl-1,10-phenanthroline) complex that may be useful as a sensor or as a dye for dye-sensitized solar cells. An acetone solution of either 1 or 2 equiv of dtbp was added to excess Cu(0) and 1 equiv of AgY (Y is O3SCF3-, BF4-, SbF6-, or B(C6F5)4-) in a nitrogen-filled glove box. Following filtration and evaporation under vacuum, crystallization from CH2Cl2 and hexanes results in X-ray quality crystals of Cu(dtbp)(O3SCF3) (1), Cu(dtbp)(BF4) (2), [Cu(dtbp)(acetone)][SbF6] (3), [Cu(dtbp)2][B(C6F5)4].CH2Cl2 (4.CH2Cl2), [Cu(dtbp)2][BF4].CH2Cl2 (5.CH2Cl2), and [Cu(dtbp)2][SbF6].CH2Cl2 (6.CH2Cl2). Complexes 1-6 were characterized by X-ray crystallography and NMR. The Cu atom in complexes 1-3 exhibited distorted trigonal coordination geometries, reflecting the steric effect of the bulky tert-butyl substituents. The structures of the pseudotetrahedral complexes 4, 4.CH2Cl2, 5.CH2Cl2, and 6.CH2Cl2 revealed the longest average Cu-N distances (2.11 A, 2.11 A, 2.10 A, and 2.11 A, respectively) in this class of compounds-longer by more than three standard deviations from the average.  相似文献   

12.
Biologically important and structurally unique marine natural products avarone (1), avarol (2), neoavarone (3), neoavarol (4) and aureol (5), were efficiently synthesized in a unified manner starting from (+)-5-methyl-Wieland-Miescher ketone 10. The synthesis involved the following crucial steps: i) Sequential BF(3)Et(2)O-induced rearrangement/cyclization reaction of 2 and 4 to produce 5 with complete stereoselectivity in high yield (2 --> 5 and 4 --> 5); ii) strategic salcomine oxidation of the phenolic compounds 6 and 8 to derive the corresponding quinones 1 and 3 (6 --> 1 and 8 --> 3); and iii) Birch reductive alkylation of 10 with bromide 11 to construct the requisite carbon framework 12 (10 + 11 --> 12). An in vitro cytotoxicity assay of compounds 1-5 against human histiocytic lymphoma cells U937 determined the order of cytotoxic potency (3 > 1 > 5 > 2 > 4) and some novel aspects of structure-activity relationships.  相似文献   

13.
We report the synthesis and total NMR characterization of 5-thia-1-azabicyclo-[4.2.0]oct-2-ene-2-carboxylic acid-3-[[[(4'-nitrophenoxy)carbonyl]oxy]-methyl]-8-oxo-7-[(2-thienyloxoacetyl)amino]-diphenylmethyl ester-5-dioxide (5), a new cephalosporin derivative. This compound can be used as the carrier of a wide range of drugs containing an amino group. The preparation of the intermediate product, 5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid-3-[methyl 4-(6-methoxyquinolin-8-ylamino)pentylcarbamate]-8-oxo-7-[(2-thienyloxoacetyl)amino]-diphenylmethyl ester-5-dioxide (6), as well as the synthesis of the antimalarial primaquine prodrug 5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid-3-[methyl 4-(6-methoxyquinolin-8-ylamino)pentylcarbamate]-8-oxo-7-[(2-thienyloxoacetyl)amino]- 5-dioxide (7) are also described, together with their total (1)H- and (13)C-NMR assignments.  相似文献   

14.
An innovative approach to the one-pot synthesis of highly functionalized 3,4-dihydro-1H-isothiochromenes (3), 6H-benzo[c]thiochromenes (5, 6), 6H-benzo[c]chromenes (8), and 2,3-dihydro-1-benzothiophenes (10, 11) is delineated from the reaction of a suitably functionalized 6-aryl-3-carbomethoxy-4-methylthio-2H-pyran-2-one (1) and a carbanion generated from tetrahydrothiopyran-4-one, 4-thiochromanone, 4-chromanone, and tetrahydrothiophene-3-one through ring-transformation reactions.  相似文献   

15.
A divergent synthesis of functionalized unsaturated delta-lactones 2, 3, 4, and 5 has been developed starting from the readily available alpha-alkenoyl-alpha-carboxyl ketene dithioacetals 1 in high to excellent yields under mild reaction conditions. Thus, 6-substituted 3-(1,3-dithiolan/dithian-2-ylidene)-3H-pyran-2(6H)-ones 2, obtained from a consecutive reduction with NaBH4 and acidic workup of 1 via a novel vinylogous Pummerer cyclization, can be further transformed into alpha-pyranones 3, 4, and 5 upon a sequential isomerization catalyzed by triethylamine (to give 3), followed by dethioacetalization (to give 4) or a formylation with Vilsmeier reagent (to give 5).  相似文献   

16.
An efficient method for the synthesis of 1,7-enyne derivatives via phosphine-palladium-catalyzed three-component assembling of activated olefins, allylic chlorides, and allenylstannanes is described. Substituted arylethylidene malononitriles 1a-g (RCH=C(CN)(2): R = C(6)H(5) (1a), p-ClC(6)H(4) (1b), p-OMeC(6)H(4) (1c), p-NO(2)C(6)H(4) (1d), 1-naphthyl (1e), 2-furyl (1f), and 2-thienyl (1g)) undergo propargylallylation with allylic chlorides 2a-e (allyl chloride (2a), methallyl chloride (2b), 4-chloropent-2-ene (2c), cinnamyl chloride (2d), and 3-chlorocyclohexene (2e)) and n-tributylallenylstannane (n-Bu(3)SnCH=C=CH(2), 3a) in the presence of Pd(PPh(3))(4) in toluene to afford the corresponding 1,7-enyne derivatives 4a-m in good to excellent yields. The catalytic reaction is highly regioselective, with the propargyl group adding to the carbon where the R group is attached and the allyl group adding to the carbon connected to the CN groups of activated olefins 1a-g. The present catalytic reaction is successfully extended to substituted arylethylidene-1,3-indanediones 5a-j (RCH = (1,3-indanedione): R = C(6)H(5) (5a), p-ClC(6)H(4) (5b), p-BrC(6)H(4) (5c), p-OMeC(6)H(4) (5d), p-NO(2)C(6)H(4) (5e), p-CNC(6)H(4) (5f), p-biphenyl (5g), 1-naphthyl (5h), 2-thienyl (5i), and 2-benzo[b]furane-2-yl (5j)) and substituted 2,2-dimethyl-5-(arylethylidene)-1,3-dioxane-4,6-diones 7a,b (RCH = (1,3-dioxane-4,6-dione): R = p-NO(2)C(6)H(4) (7a), p-OMeC(6)H(4) (7b)). The three-component assembling of these substrates with allylic chlorides (2a,b,d,e) and n-tributylallenylstannane (n-Bu(3)SnCH=C=CH(2), 3a) proceeds smoothly to afford the corresponding 1,7-enyne derivatives 6a-m and 8a-d in good to excellent yields. The catalytic propargylallylation can be further applied to the activated dienes, C(6)H(5)CH=CH=CR(2) (R(2) = (CN)(2) (9a), 1,3-indanedione (9b), 2,2-dimethyl-1,3-dioxane-4,6-dione (9c)), with allylic chlorides (2a,b,d) and allenylstannane 3a to give regio- and chemoselective 1,2-addition products 10a-h in good to excellent yields. A plausible mechanism based on an eta(1)-allenyl eta(3)-allyl palladium intermediate is proposed to account for the catalytic three-component reaction.  相似文献   

17.
The synthesis and characterization of the dioxouranium(VI) dibromide and iodide hydrates, UO(2)Br(2)x3H(2)O (1), [UO(2)Br(2)(OH(2))(2)](2) (2), and UO(2)I(2)x2H(2)Ox4Et(2)O (3), are reported. Moreover, adducts of UO(2)I(2) and UO(2)Br(2) with large, bulky OP(NMe(2))(3) and OPPh(3) ligands such as UO(2)I(2)(OP(NMe(2))(3))(2) (4), UO(2)Br(2)(OP(NMe(2))(3))(2) (5), and UO(2)I(2)(OPPh(3))(2)(6) are discussed. The structures of the following compounds were determined using single-crystal X-ray diffraction techniques: (1) monoclinic, P2(1)/c, a = 9.7376(8) A, b = 6.5471(5) A, c = 12.817(1) A, beta = 94.104(1) degrees , V = 815.0(1) A(3), Z = 4; (2) monoclinic, P2(1)/c, a = 6.0568(7) A, b = 10.5117(9) A, c = 10.362(1) A, beta = 99.62(1) degrees , V = 650.5(1) A(3), Z = 2; (4) tetragonal, P4(1)2(1)2, a = 10.6519(3) A, b = 10.6519(3) A, c = 24.0758(6) A, V = 2731.7(1) A(3), Z = 4; (5) tetragonal, P4(1)2(1)2, a = 10.4645(1) A, b = 10.4645(1) A, c = 23.7805(3) A, V = 2604.10(5) A(3), Z = 4, and (6) monoclinic, P2(1)/c, a = 9.6543(1) A, b = 18.8968(3) A, c = 10.9042(2) A, beta =115.2134(5) degrees , V = 1783.01(5) A(3), Z = 2. Whereas 1 and 2 are the first UO(2)Br(2) hydrates and the last missing members of the UO(2)X(2) hydrate (X = Cl --> I) series to be structurally characterized, 4 and 6 contain room-temperature stable U(VI)-I bonds with 4 being the first structurally characterized room temperature stable U(VI)-I compound which can be conveniently prepared on a gram scale in quantitative yield. The synthesis and characterization of 5 using an analogous halogen exchange reaction to that used for the preparation of 4 is also reported.  相似文献   

18.
A variety of hexaorganotellurium compounds, Ar(6-n)(CH3)nTe [Ar=4-CF3C6H4, n=0 (1a), n=1 (3a), n=2 (trans-4a and cis-4a), n=3 (mer-5a), n=4 (trans-6a); Ph, n=0 (1b), n=1 (3b), n=2 (trans-4b); 4-CH3C6H4, n=0 (1c), n=1 (3c), n=2 (trans-4c), n=4 (trans-6c); 4-BrC6H4, n=0 (1d)] and Ar5(R)Te [Ar=4-CF3C6H4, R=4-CH3OC6H4 (8); Ar=4-CF3C6H4, R=vinyl (9), Ar=Ph, R=vinyl (10), Ar=4-CF3C6H4, R=PhSCH2 (11), Ar=Ph, R=PhSCH2 (12), Ar=4-CF3C6H4, R=nBu (13)] and pentaorganotellurium halides, Ar5TeX [Ar=4-CF3C6H4, X=Cl (2a-Cl), X=Br (2a-Br); Ar=Ph, X=Cl (2b-Cl), X=Br (2b-Br); Ar=4-CH3C6H4, X=Cl (2c-Cl), X=Br (2c-Br); Ar=4-BrC6H4, X=Br (2d-Br)] and (4-CF3C6H4)4(CH3)TeX [X=Cl (trans-7a-Cl) and X=Br (trans-7a-Br)] were synthesized by the following methods: 1) one-pot synthesis of 1 a, 2) the reaction of SO2Cl2 or Br2 with Ar5Te(-)Li+ generated from TeCl4 or TeBr4 with five equivalents of ArLi, 3) reductive cleavage of Ar(6-m)(CH3)(m)Te (m=0 or 2) with KC8 followed by treatment with CH3I, 4) valence expansion reaction from low-valent tellurium compounds by treatment with KC8 followed by reaction with CH3I, 5) nucleophilic substitution of Ar(6-y-z)(CH3)zTeX(y-z) (X=Cl, Br, OTf; z=0, 1; y=1, 2) with organolithium reagents. The scope and limitations and some details for each method are discussed and electrophilic halogenation of the hexaorganotellurium compounds is also described.  相似文献   

19.
Neutral and cationic mononuclear complexes containing both group 15 and polypyridyl ligands [Ru(kappa3-tptz)(PPh3)Cl2] [1; tptz=2,4,6-tris(2-pyridyl)-1,3,5-triazine], [Ru(kappa3-tptz)(kappa2-dppm)Cl]BF4 [2; dppm=bis(diphenylphosphino)methane], [Ru(kappa3-tptz)(PPh3)(pa)]Cl (3; pa=phenylalanine), [Ru(kappa3-tptz)(PPh3)(dtc)]Cl (4; dtc=diethyldithiocarbamate), [Ru(kappa3-tptz)(PPh3)(SCN)2] (5) and [Ru(kappa3-tptz)(PPh3)(N3)2] (6) have been synthesized. Complex 1 has been used as a metalloligand in the synthesis of homo- and heterodinuclear complexes [Cl2(PPh3)Ru(micro-tptz)Ru(eta6-C6H6)Cl]BF4 (7), [Cl2(PPh3)Ru(mu-tptz)Ru(eta6-C10H14)Cl]PF6 (8), and [Cl2(PPh3)Ru(micro-tptz)Rh(eta5-C5Me5)Cl]BF4 (9). Complexes 7-9 present examples of homo- and heterodinuclear complexes in which a typical organometallic moiety [(eta6-C6H6)RuCl]+, [(eta6-C10H14)RuCl]+, or [(eta5-C5Me5)RhCl]+ is bonded to a ruthenium(II) polypyridine moiety. The complexes have been fully characterized by elemental analyses, fast-atom-bombardment mass spectroscopy, NMR (1H and 31P), and electronic spectral studies. Molecular structures of 1-3, 8, and 9 have been determined by single-crystal X-ray diffraction analyses. Complex 1 functions as a good precursor in the synthesis of other ruthenium(II) complexes and as a metalloligand. All of the complexes under study exhibit inhibitory effects on the Topoisomerase II-DNA activity of filarial parasite Setaria cervi and beta-hematin/hemozoin formation in the presence of Plasmodium yoelii lysate.  相似文献   

20.
A novel para to meta shift of a nitro group at the phenyl ring of 3-(2-hydroxy-4-nitrophenylhydrazo)pentane-2,4-dione (H(2)L(1), 1), with formation of the new 3-(2-hydroxy-3,5-dinitrophenylhydrazo)pentane-2,4-dione (H(2)L(2), 2), occurs upon nitration of 1 with an equimolar amount of NaNO(2), under basic conditions. 2 acts as a polydentate ligand for the synthesis of the polymeric potassium [K(μ(5)-HL(2))](n) (3) and monomeric nickel(II) [Ni(H(2)O)(3)(L(2))]·H(2)O (4) compounds. They have been fully characterized, including single crystal X-ray analysis, and the complexes feature metal-organic (in 3) or supramolecular (in 4) 3D networks. The topological analysis of 3 reveals a uninodal 5-connected underlying net with the point symbol of (4(6).6(4)) and a very rare 5/4/t5 topology, which had not yet been observed in coordination polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号