首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hitherto unknown type of aqueous complex, ternary Ca-MIV-OH complexes (M = Zr and Th), causes unexpectedly high solubilities of zirconium(IV) and thorium(IV) hydrous oxides in alkaline CaCl2 solutions (pHc = 10-12, [CaCl2] > 0.05 mol.L(-1), and pHc = 11-12, [CaCl2] > 0.5 mol.L(-1), respectively). The dominant aqueous species are identified as Ca3[Zr(OH)6]4+ and Ca4[Th(OH)8]4+ and characterized by extended X-ray absorption fine structure (EXAFS) spectroscopy. The number of OH- ligands in the first coordination sphere detected by EXAFS, NO = 6 (6.6 +/- 1.2) for Zr and NO = 8 (8.6 +/- 1.2) for Th, are consistent with the observed slopes of 2 and 4 in the solubility curves log [M]tot vs pHc. The presence of polynuclear hydrolysis species and the formation of chloride complexes can be excluded. EXAFS spectra clearly show a second coordination shell of calcium ions. The [Zr(OH)6]2- and [Th(OH)8]4- complexes with an unusually large number of OH- ligands are stabilized by the formation of associates or ion pairs with Ca2+ ions. The number of neighboring Ca2+ ions around the [Zr(OH)6]2- and [Th(OH)8]4- units is determined to be NCa = 3 (2.7 +/- 0.6) at a distance of RZr-Ca = 3.38 +/- 0.02 A and NCa = 4 (3.8 +/- 0.5) at a distance of RTh-Ca = 3.98 +/- 0.02 A. The Ca3[Zr(OH)6]4+ and Ca4[Th(OH)8]4+ complexes have first (M-O) and second (M-Ca) coordination spheres with the Ca2+ ions bound to coordination polyhedra edges.  相似文献   

2.
The coordination of the U(IV) and U(VI) ions as a function of the chloride concentration in aqueous solution has been studied by U L(III)-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. The oxidation state of uranium was changed in situ using a gastight spectroelectrochemical cell, specifically designed for the safe use with radioactive solutions. For U(VI) we observed the complexes UO2(H2O)5(2+), UO2(H2O)4Cl+, UO2(H2O)3Cl2(0), and UO2(H2O)2Cl3- with [Cl-] increasing from 0 to 9 M, and for U(IV) we observed the complexes U(H2O)9(4+), U(H2O)8Cl3+, U(H2O)(6-7)Cl2(2+), and U(H2O)5Cl3+. The distances in the U(VI) coordination sphere are U-Oax = 1.76+/-0.02 A, Oeq = 2.41 +/- 0.02 A, and U-Cl = 2.71 +/- 0.02 A; the distances in the U(IV) coordination sphere are U-O = 2.41 +/- 0.02 A and U-Cl = 2.71 +/- 0.02 A.  相似文献   

3.
The local structure of U(VI), U(IV), and Th(IV) sulfato complexes in aqueous solution was investigated by U-L(3) and Th-L(3) EXAFS spectroscopy for total sulfate concentrations 0.05 < or = [SO(4)(2-)] < or = 3 M and 1.0 < or = pH < or = 2.6. The sulfate coordination was derived from U-S and Th-S distances and coordination numbers. The spectroscopic results were combined with thermodynamic speciation and density functional theory (DFT) calculations. In equimolar [SO(4)(2-)]/[UO(2)(2+)] solution, a U-S distance of 3.57 +/- 0.02 Angstrom suggests monodentate coordination, in line with UO(2)SO(4)(aq) as the dominant species. With increasing [SO(4)(2-)]/[UO(2)(2+)] ratio, an additional U-S distance of 3.11 +/- 0.02 Angstrom appears, suggesting bidentate coordination in line with the predominance of the UO(2)(SO(4))(2)(2-) species. The sulfate coordination of Th(IV) and U(IV) was investigated at [SO(4)(2-)]/[M(IV)] ratios > or = 8. The Th(IV) sulfato complex comprises both, monodentate and bidentate coordination, with Th-S distances of 3.81 +/- 0.02 and 3.14 +/- 0.02 Angstrom, respectively. A similar coordination is obtained for U(IV) sulfato complexes at pH 1 with monodentate and bidentate U-S distances of 3.67 +/- 0.02 and 3.08 +/- 0.02 Angstrom, respectively. By increasing the pH value to 2, a U(IV) sulfate precipitates. This precipitate shows only a U-S distance of 3.67 +/- 0.02 Angstrom in line with a monodentate linkage between U(IV) and sulfate. Previous controversially discussed observations of either monodentate or bidentate sulfate coordination in aqueous solutions can now be explained by differences of the [SO(4)(2-)]/[M] ratio. At low [SO(4)(2-)]/[M] ratios, the monodentate coordination prevails, and bidentate coordination becomes important only at higher ratios.  相似文献   

4.
The rates and mechanisms of the electron self-exchange between U(V) and U(VI) in solution have been studied with quantum chemical methods. Both outer-sphere and inner-sphere mechanisms have been investigated; the former for the aqua ions, the latter for binuclear complexes containing hydroxide, fluoride, and carbonate as bridging ligand. The calculated rate constant for the self-exchange reaction UO(2)(+)(aq) + UO(2)(2+)(aq) <=>UO(2)(2+)(aq) + UO(2)(+)(aq), at 25 degrees C, is k = 26 M(-1) s(-1). The lower limit of the rate of electron transfer in the inner-sphere complexes is estimated to be in the range 2 x 10(4) to 4 x 10(6) M(-1) s(-1), indicating that the rate for the overall exchange reaction may be determined by the rate of formation and dissociation of the binuclear complex. The activation energy for the outer-sphere model calculated from the Marcus model is nearly the same as that obtained by a direct calculation of the precursor- and transition-state energy. A simple model with one water ligand is shown to recover 60% of the reorganization energy. This finding is important because it indicates the possibility to carry out theoretical studies of electron-transfer reactions involving M(3+) and M(4+) actinide species that have eight or nine water ligands in the first coordination sphere.  相似文献   

5.
The tetrameric hydrolysis products of zirconium(IV) and hafnium(IV), the zirconyl(IV) and hafnyl(IV) ions, [M(4)(OH)(8)(OH(2))(16)(8+)], often labelled MO(2+).5H(2)O, are in principle the only zirconium(IV) and hafnium(IV) species present in aqueous solution without stabilising ligands and pH larger than zero. These complexes are furthermore kinetically very stable and do not become protonated even after refluxing in concentrated acid for at least a week. The structures of these complexes have been determined in both solid state and aqueous solution by means of crystallography, EXAFS and large angle X-ray scattering (LAXS). Each metal ion in the [M(4)(OH)(8)(OH(2))(16)](8+) complex binds four hydroxide ions in double hydroxo bridges, and four water molecules terminally. The M-O bond distance to the hydroxide ions are markedly shorter, ca. 0.12 A, than to the water molecules. The hydrated zirconium(IV) and hafnium(IV) ions only exist in extremely acidic aqueous solution due to their very strong tendency to hydrolyse. The structure of the hydrated zirconium(IV) and hafnium(IV) ions has been determined in concentrated aqueous perchloric acid by means of EXAFS, with both ions being eight-coordinated, most probably in square antiprismatic fashion, with mean Zr-O and Hf-O bond distances of 2.187(3) and 2.160(12) A, respectively. The dimethyl sulfoxide solvated zirconium(IV) and hafnium(IV) ions are square antiprismatic in both solid state and solution, with mean Zr-O and Hf-O bond distances of 2.193(1) and 2.181(6) A, respectively, in the solid state. Hafnium(IV) chloride does not dissociate in N,N'-dimethylpropyleneurea, dmpu, a solvent with good solvating properties but with a somewhat lower permittivity (epsilon= 36.1) than dimethyl sulfoxide (epsilon= 46.4), and an octahedral HfCl(4)(dmpu)(2) complex is formed.  相似文献   

6.
The coordination around the thorium(IV) ion in aqueous perchlorate, chloride and nitrate solutions has been determined from large angle X-ray scattering measurements. In perchlorate solutions, where inner-sphere complexes are not formed, the first coordination sphere contains 8.0±0.5 water molecules with Th-H2O bond lengths of 2.485 Å. In chloride solutions inner-sphere complexes are formed, which lead to an increase in the coordination number. In nitrate solutions the nitrate ions are bonded as bidentate ligands to the thorium ion. The bond lengths are similar to those found in crystalline hydrates of thorium nitrate. The coordination numbers found for thorium(IV) in solution are compared with previously reported values for lower charged ions of similar size.On leave from Department of Inorganic Chemistry Royal Institute of Technology S-10044 Stockholm Sweden  相似文献   

7.
Thuéry P 《Inorganic chemistry》2011,50(5):1898-1904
The crystal structures of the complexes formed by reaction of thorium(IV) nitrate with iminodiacetic acid (H(2)IDA), nitrilotriacetic acid (H(3)NTA), and ethylenediaminetetraacetic acid (H(4)EDTA) under hydrothermal conditions are reported. In [Th(HIDA)(2)(C(2)O(4))]·H(2)O (1), the metal atom is chelated by two carboxylate groups from two HIDA(-) anions and by two oxalate ligands formed in situ; two additional oxygen atoms from two more HIDA(-) anions complete the ten-coordinate environment of bicapped square antiprismatic geometry. The uncoordinated nitrogen atom is protonated and involved in hydrogen bonding. Two different ligands are present in [Th(NTA)(H(2)NTA)(H(2)O)]·H(2)O (2), one of them being a O(3),N-chelating trianion which acts also as a bridge toward two neighboring metal ions, and the other being a bis-monodentate bridging species with an uncoordinated carboxylic arm and a central ammonium group. An aqua ligand completes the nine-coordinated, capped square antiprismatic metal environment. The EDTA(4-) anion in [Th(EDTA)(H(2)O)]·2H(2)O (3) is chelating through one oxygen atom from each carboxylate group and the two nitrogen atoms, as in a previously reported molecular complex. Two carboxylate groups are bridging, which, with the addition of an aqua ligand, gives a capped square antiprismatic coordination polyhedron. Aminopolycarboxylate ligands have been much investigated in relation with actinide decorporation and nuclear wastes management studies, and the present results add to the structural information available on their complexes with thorium(IV), which has mainly been obtained up to now by extended X-ray absorption fine structure (EXAFS) spectroscopy. In particular, the bridging (non-chelating) coordination mode of H(2)NTA(-) is a novel feature in this context. All three complexes crystallize as two-dimensional assemblies and are thus novel examples of thorium-organic coordination polymers.  相似文献   

8.
The speciation in the mixed Th(IV)-Fe(III) system has been studied in aqueous solution in the pH range of 2.0-4.8. In the individual systems iron(III) and thorium(IV) hydrolyze easily and hydrolysis products precipitate at approximately pH ≥ 2.0 and 4.0, respectively, at the metal concentrations used in this study, 0.02-0.05 mol dm(-3). In the mixed Th(IV)-Fe(III) system precipitation of ferrihydrite takes place after months of storage at low pH values, 2.0 (six-line ferrihydrite) and 2.3 (two-line ferrihydrite), as identified by X-ray powder diffraction. In the pH range 2.9-4.5 no precipitation was observed after 24 months. Two thorium(IV)-iron(III) solutions with pH = 2.9, C(Th) = 0.02 and 0.05 mol dm(-3) and C(Fe) = 0.02 mol dm(-3), were studied by extended X-ray absorption fine structure, EXAFS, using the Fe K and Th L(3) edges, and a third solution with pH = 2.9 and C(Th) = C(Fe) = 0.40 mol dm(-3) by large angle X-ray scattering, LAXS, to determine the structure of the predominating species. A heteronuclear hydrolysis complex with the composition [Th(2)Fe(2)(μ(2)-OH)(8)(H(2)O)(12)](6+) is proposed to form in solution, with Th···Th, Th···Fe and Fe···Fe distances of 3.94(2) and 3.96(2), 3.41(3) and 3.43(2), 3.04(2) and 3.02(4) ?, as determined by EXAFS and LAXS, respectively.  相似文献   

9.
The reactions of uranium(VI) and thorium(IV) ions with carminic acid have been investigated. These ions react with carminic acid in neutral medium, forming colored complexes. The dark purple or red wine complexes show a high absorption in the visible region (597 nm U(VI) and 616 nm Th(IV)). Chemical variables that affect the reaction have been optimized. The spectral overlapping of the color of complexes has been resolved by first-derivative spectrophotometry. The simultaneous determination of uranium(VI) and thorium(IV) mixtures is accomplished by taking the derivative signal (zero crossing) at 597 nm for U(VI) determination and at 616 nm for Th(IV) determination, respectively. The method has been applied to Tyuyamonite ore, containing in the matrix both ions.  相似文献   

10.
A new chelating resin (glycidyl methacrylate/divinylbenzene/pentaethylenehexamine (GMA/DVB/PEHA)) for uranium(VI) and thorium(IV) has been developed by functionalizing GMA/DVB with PEHA. The adsorption of U(VI) and Th(IV) ions onto the functionalized GMA/DVB/PEHA were investigated as a function of pH value, contact time, and temperature using batch adsorption technique. The results showed that U(VI) and Th(IV) adsorption onto GMA/DVB/PEHA was strongly dependent on pH. Kinetic studies revealed that the adsorption process achieved equilibrium within 15 and 90 minutes for Th(IV) and U(VI), respectively, and followed a pseudo-second-order rate equation. The isothermal data correlated with the Langmuir model better than the Freundlich model. Thermodynamic data indicated the spontaneous and endothermic nature of the process. The maximum adsorption capacity of U(VI) and Th(IV) were found to be 114 and 78 mg/g, respectively. Quantitative recovery of uranium and thorium were achieved by desorbing the loaded GMA/DVB/PEHA with 0.5 M HNO3   相似文献   

11.
The rates and mechanisms of the electron self-exchange between Np(V) and Np(VI) in solution have been studied with quantum chemical methods and compared with previous results for the U(V)-U(VI) pair. Both outer-sphere and inner-sphere mechanisms have been investigated, the former for the aqua ions, the latter for binuclear complexes containing hydroxide, fluoride, and carbonate as bridging ligand. Solvent effects were calculated using the Marcus equation for the outer-sphere reactions and using a nonequilibrium PCM method for the inner-sphere reactions. The nonequilibrium PCM appeared to overestimate the solvent effect for the outer-sphere reactions. The calculated rate constant for the self-exchange reaction NpO2(+)(aq) + NpO2(2+)(aq) right harpoon over left harpoon NpO2(2+)(aq) + NpO2(+)(aq), at 25 degrees C is k = 67 M(-1) s(-1), in fair agreement with the observed rates 0.0063-15 M(-1) s(-1). The differences between the Np(V)-Np(VI) and the U(V)-U(VI) pairs are minor.  相似文献   

12.
A novel optical sensor has been proposed for sensitive determination of thorium (IV) ion in aqueous solutions. The thorium sensing membrane was prepared by incorporating 4-(p-nitrophenyl azo)-pyrocatechol (NAP) as ionophore in the plasticized PVC membrane containing tributyl phosphate (TBP) as plasticizer. The membrane responds to thorium ion by changing color reversibly from yellow to red-brown in glycine buffer solution at pH 3.5. The proposed sensor displays a linear range of 8.66 × 10−6-2.00 × 10−4 M with a limit of detection of 6 × 10−6 M. The response time of the optode was about 8.8-12.5 min, depending on the concentration of Th (IV) ions. The selectivity of optode to Th (IV) ions in glycine buffer is good. The sensor can readily be regenerated by exposure to a solution mixture of sodium fluoride and 5-sulfosalicylic acid (dihydrate) (0.01 M each). The optode is fully reversible. The proposed optode was applied to the determination of thorium (IV) in environmental water samples.  相似文献   

13.
A simple and effective method is presented for the separation and preconcentration of thorium(IV) and uranium(VI) by solid phase extraction on Duolite XAD761 adsorption resin. Thorium(IV) and uranium(VI) 9-phenyl-3-fluorone chelates are formed and adsorbed onto the Duolite XAD761. Thorium(IV) and uranium(VI) are quantitatively eluted with 2 mol L−1 HCl and determined by inductively coupled plasma-mass spectrometry (ICP-MS). The influences of analytical parameters including pH, amount of reagents, amount of Duolite XAD761 and sample volume, etc. were investigated on the recovery of analyte ions. The interference of a large number of anions and cations has been studied and the optimized conditions developed have been utilized for the trace determination of uranium and thorium. A preconcentration factor of 30 for uranium and thorium was achieved. The relative standard deviation (N = 10) was 2.3% for uranium and 4.5% for thorium ions for 10 replicate determinations in the solution containing 0.5 μg of uranium and thorium. The three sigma detection limits (N = 15) for thorium(IV) and uranium(VI) ions were found to be 4.5 and 6.3 ng L−1, respectively. The developed solid phase extraction method was successively utilized for the determination of traces thorium(IV) and uranium(VI) in environmental samples by ICP-MS.  相似文献   

14.
The structure of the hydrated calcium(II) ion in aqueous solution has been studied by means of extended X-ray absorption fine structure spectroscopy (EXAFS), large-angle X-ray scattering (LAXS), and molecular dynamics (MD) methods. The EXAFS data displayed a broad and asymmetric distribution of the Ca-O bond distances with the centroid at 2.46(2) A. LAXS studies on four aqueous calcium halide solutions (1.5-2 mol dm(-)(3)) gave a mean Ca-O bond distance of 2.46(1) A. This is consistent with a hydration number of 8 determined from correlations between mean distances and coordination numbers from crystal structures. The LAXS studies showed a second coordination sphere with a mean Ca.O(II) distance of 4.58(5) A, and for the hydrated halide ions the distances Cl.O 3.25(1) A, Br.O 3.36(1) A, and I.O 3.61(1) A were obtained. Molecular dynamics simulations of CaCl(2)(aq) were performed using three different Ca(2+)-OH(2) pair potentials. The potential from the GROMOS program gave results in agreement with experiments, i.e., a coordination number of 8 and an average Ca-O distance of 2.46 A, and was used for further comparisons. Theoretical EXAFS oscillations were computed for individual MD snapshots and showed very large variations, though the simulated average spectrum from 2000 snapshots gave satisfactory agreement with the experimental EXAFS spectra. The effect of thermal motions of the coordinated atoms is inherent in the MD simulation method. Thermal disorder parameters evaluated from simulated spatial atom distribution functions of the oxygen atoms coordinated to the calcium ion were in close agreement with those from the current LAXS and EXAFS analyses. The combined results are consistent with a root-mean-square displacement from the mean Ca-O distance of 0.09(2) A in aqueous solution at 300 K.  相似文献   

15.
A poly(vinyl chloride)-based membrane composed of dithio-tetraaza macrocyclic compound as a neutral carrier with sodium tetraphenylborate (NaTPB) as an anion excluder and nitrobenzene (NB) as plasticizer was prepared and investigated as a Th(IV)-selective electrode. The electrode exhibits a Nernstian slope of 14.2 +/- 0.3 mV per decade over a wide concentration range (1.0 x 10(-6) to 1.0 x 10(-1) M) with a detection limit of 8.0 x 10(-7) M between pH 3.5 and 9.5. The response time of the sensor is about 10 s and it can be used over a period of 5 months without any divergence in potential. The proposed membrane sensor revealed a good selectivity for Th(IV) over a wide variety of other metal ions and proved to be a better electrode in many respects than those reported in the literature. It was successfully applied as an electrode indicator as well as in the direct determination of thorium ions in standard and real samples.  相似文献   

16.
The extraction of thorium(IV) and uranium(VI) from nitric acid solutions has been studied using mixtures of 3-phenyl-4-benzoyl-5-isoxazolone (HPBI) and dicyclohexano-18-crown-6, benzo-18-crown-6, dibenzo-18-crown-6 or benzo-15-crown-5. The results demonstrate that these metal ions are extracted into chloroform as Th(PBI)(4) and UO(2)(PBI)(2) with HPBI alone and as Th(PBI)(4) . CE and UO(2)(PBI)(2) . CE in the presence of crown ethers (CE). The equilibrium constants of the above species have been deduced by non-linear regression analysis. The addition of a CE to the metal chelate system enhances the extraction efficiency and also improves the selectivities between thorium and uranium. IR spectral data of the extracted complexes were used to further clarify the nature of the complexes. The binding to the CEs by Th(PBI)(4) and UO(2)(PBI)(2) follows the CE basicity sequence but with DC18C6 and DB18C6, steric effects become more important.  相似文献   

17.
X-Ray absorption spectroscopy was used to probe the coordination of different encrypted cations in the Preyssler anions [M(n+)P5W(30)O(110)]((15-n)-)(M(n+)= Sr2+, Am3+, Eu3+, Sm3+, Y3+, Th4+, U4+ in decreasing order of ionic radius, IR), hereafter abbreviated [M(n+)PA](15-n)-. The increase of the M-W distance and the decrease of the M-P distance with increasing M ionic radius reveal that the M cation is displaced along the C5 axis within the Preyssler cavity. The slight change (0.07 A) of the M-O distance that does not correspond to the IR difference of 0.27 A confirms that the cavity retains its rigidity upon cation substitution. Geometric modeling of the encapsulated cation in the channel was performed for comparison to the EXAFS results. The position of the cation in the cavity was calculated as well as the M-O10, -W5 and -P5 distances. This modeling confirms the cation displacement toward the center of the Preyssler anion as the cation size increases, which is understood in terms of the non-homogenous electrostatic potential present within the cavity. The bond valence model approach was applied to obtain experimental bond valences. Only the bond valence sum (BVS) of Am3+ is close to its actual charge. Sums smaller than the actual valences of the +3 and +4 ions (2.39-2.63 for +3 cations, Y, Sm, Eu; 3.17 and 3.38 for +4 cations, U and Th, respectively) were obtained, and a larger sum (2.89) was obtained for Sr2+. The deviations from the formal M sums of the encapsulated ions are attributed to the rigidity of the Preyssler framework. The tendency toward coordinative unsaturation for electroactive cations, such as Eu3+, is thought to be the driving force for facile reduction. Unlike other inorganic chelating ligands, the Preyssler anion provides a unique redox system to stabilize an electroactive cation in a low oxidation state.  相似文献   

18.
The possibility of the highly sensitive sorption-spectrometric determination of Th(IV) and U(VI) in the presence of each other on the solid phase of fibrous anion-exchange materials with Arsenazo M and Arsenazo III was examined. Polyacrylonitrile fiber filled with an exchanger AN-31, ANKB-50, or EDE-10p was used as the solid phase. It was demonstrated that the studied systems allow the selective determination of thorium in the presence of one-to twofold amounts of uranium. On PANV-EDE-10p with immobilized Arsenazo III, the detection limit of thorium in 2–10 M HCl is 0.002 μg/mL, and in 10 M HCl the presence of up to twofold amounts of uranium is permissible. A high sensitivity of the determination of uranium in 2–7 M HCl of 0.005 μg/mL, which has not been reported before, was attained. The time of the analysis of five or six samples is no longer than 20 min.  相似文献   

19.
A simple and sensitive method for the determination of ultra trace amounts of U(VI) and Th(IV) ions by spectrophotometric method after solid-phase extraction on a new extractant-impregnated resin (EIR) has been reported. The new EIR was synthesised by impregnating a weakly polar polymeric adsorbent, Amberlite XAD-7, with titan yellow (TY) as extractant. The analytical method is based on the simultaneous adsorption of analyte ions in a mini-column packed with TY/XAD-7 and performing sequential elution with 0.5% (w/v) Na2CO3 for uranium and 2.0 M HCl for thorium. The influences of the analytical parameters including pH, salting out agent and sample volume were investigated. The interference effects of foreign ions on the retention of the analyte ions were also explored. The limits of detection for U(VI) and Th(IV) were as low as 50 and 25 ng L?1, respectively. Relative standard deviations (n = 7) for U(VI) and Th(IV) were 3.1% and 2.9%, respectively. The method was successfully applied to the determination of ultra trace amounts of U(VI) and Th(IV) in different real matrices including industrial wastewater samples and environmental waters. The proposed method was validated using three certified reference materials and the results were in good agreement with the certified values.  相似文献   

20.
In this study, the effects of various extraction parameters such as extractant types (Cyanex302, Cyanex272, TBP), acid type (nitric, sulfuric, hydrochloric) and their concentrations were studied on the thorium separation efficiency from uranium(VI), titanium(IV), lanthanum(III), iron(III) using Taguchi??s method. Results showed that, all these variables had significant effects on the selective thorium separation. The optimum separations of thorium from uranium, titanium and iron were achieved by Cyanex302. The aqueous solutions of 0.01 and 1 M nitric acid were found as the best aqueous conditions for separating of thorium from titanium (or iron) and uranium, respectively. The combination of 0.01 M nitric acid and Cyanex272 were found that to be the optimum conditions for the selective separation of thorium from lanthanum. The results also showed that TBP could selectively extract all studied elements into organic phase leaving thorium behind in the aqueous phase. Detailed experiments showed that 0.5 M HNO3 is the optimum acid concentration for separating of thorium from other elements with acidic extractants such as Cyanex272 and Cyanex302. The two-stage process containing TBP-Cyanex302 was proposed for separation thorium and uranium from Zarigan ore leachate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号