首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of heavier group 14 element, terminal phosphide complexes, M(BDI)(PR(2)) (M = Ge, Sn, Pb; BDI = CH{(CH(3))CN-2,6-iPr(2)C(6)H(3)}(2); R = Ph, Cy, SiMe(3)) have been synthesized. Two different conformations (endo and exo) are observed in the solid-state; the complexes with an endo conformation have a planar coordination geometry at phosphorus (M = Ge, Sn; R = SiMe(3)) whereas the complexes possessing an exo conformation have a pyramidal geometry at phosphorus. Solution-state NMR studies reveal through-space scalar coupling between the tin and the isopropyl groups on the N-aryl moiety of the BDI ligand, with endo and exo exhibiting different J(SnC) values. The magnitudes of the tin-phosphorus and lead-phosphorus coupling constants, |J(SnP)| and |J(PbP)|, differ significantly depending upon the hybridization of the phosphorus atom. For Sn(BDI)(P{SiMe(3)}(2)), |J(SnP)| is the largest reported in the literature, surpassing values attributed to compounds with tin-phosphorus multiple-bonds. Low temperature NMR studies of Pb(BDI)(P{SiMe(3)}(2)) show two species with vastly different |J(PbP)| values, interpreted as belonging to the endo and exo conformations, with sp(2)- and sp(3)-hybridized phosphorus, respectively.  相似文献   

2.
Berg KE  Blixt J  Glaser J 《Inorganic chemistry》1996,35(24):7074-7081
The existence of mixed complexes of the general formula Tl(CN)(m)()Cl(n)()(3)(-)(m)()(-)(n)() (m + n 相似文献   

3.
The molecular geometries and the nuclear spin-spin coupling constants of the complexes [(NC)(5)Pt-Tl(CN)(n)](n-), n = 0-3, and the related system [(NC)(5)Pt-Tl-Pt(CN)(5)](3-) are studied. These complexes have received considerable interest since the first characterization of the n = 1 system by Glaser and co-workers in 1995 [J. Am. Chem. Soc. 1995, 117, 7550-7551]. For instance, these systems exhibit outstanding NMR properties, such as extremely large Pt-Tl spin-spin coupling constants. For the present work, all nuclear spin-spin coupling constants J(Pt-Tl), J(Pt-C), and J(Tl-C) have been computed by means of a two-component relativistic density functional approach. It is demonstrated by the application of increasingly accurate computational models that both the huge J(Pt-Tl) for the complex (NC)(5)Pt-Tl and the whole experimental trend among the series are entirely due to solvent effects. An approximate inclusion of the bulk solvent effects by means of a continuum model, in addition to the direct coordination, proves to be crucial. Similarly drastic effects are reported for the coupling constants between the heavy atoms and the carbon nuclei. A computational model employing the statistical average of orbital-dependent model potentials (SAOP) in addition to the solvent effects allows to accurately reproduce the experimental coupling constants within reasonable limits.  相似文献   

4.
Three 2,2'-bipyridine (2,2'-bpy) complexes of Pt(IV) have been synthesized, characterized by X-ray crystallography, and their solution behavior in D(2)O studied by (1)H NMR spectroscopic analysis: mer-[PtCl(3)(2,2'-bpy)(MeNH(2))]ClH(2)O (4), trans-[PtCl(2)(2,2'-bpy)(MeNH(2))(2)]Cl(2) (5), and trans-[Pt (2,2'-bpy)(MeNH(2))(2)(OH)(2)]Cl(2) (6; MeNH(2)=methylamine). Complexes 4 and 5 undergo hydrolysis of the Cl(-) ions, both in the dark and daylight, as evident from a drop in the pH value. Two solvolysis products were detected in the case of 4, which is indicative of species with equatorial and axial OH(-) groups. The hydrolysis reaction of 5 implies that an axial Cl(-) group is replaced by an OH(-) moiety; in contrast, 6 remains virtually unaffected. Ordinary daylight, in particular irradiation with a 50-W halogen lamp, initially causes ligand-isomerization processes, which are followed by the reduction of 4 and 5 to Pt(II) species. This reduction of 4 and 5 is accompanied by the formation of hypochlorous acid, as demonstrated qualitatively in the decoloration test of indigo, and loss of MeNH(2), which is particularly pronounced in the case of 5. The formation of Pt(II) compounds is established on the basis of the J coupling constants of (195)Pt with selected (1)H NMR resonances. The results obtained herein are possibly also relevant to the chemistry of Cl-containing Pt(IV) antitumor agents and their reactions with DNA.  相似文献   

5.
It is now well-known that (2)H solid-state NMR techniques can bring a better understanding of the interaction of deuterium with metal atoms in organometallic mononuclear complexes, clusters or nanoparticles. In that context, we have recently obtained experimental quadrupolar coupling constants and asymmetry parameters characteristic of deuterium atoms involved in various bonding situations in ruthenium clusters, namely D(4)Ru(4)(CO)(12), D(2)Ru(6)(CO)(18) and other related compounds [Gutmann et al., J. Am. Chem. Soc., 2010, 132, 11759], which are model compounds for edge-bridging (μ-H) and face-capping (μ(3)-H) coordination types on ruthenium surfaces. The present work is in line with density functional theory (DFT) calculations of the electric field gradient (EFG) tensors in deuterated organometallic ruthenium complexes. The comparison of quadrupolar coupling constants shows an excellent agreement between calculated and observed values. This confirms that DFT is a method of choice for the analysis of deuterium NMR spectra. Such calculations are achieved on a large number of ruthenium clusters in order to obtain quadrupolar coupling constants characteristic of a given coordination type: terminal-D, η(2)-D(2), μ-D, μ(3)-D as well as μ(4)-D and μ(6)-D (i.e. interstitial deuterides). Given the dependence of such NMR parameters mainly on local symmetry, these results are expected to remain valid for large assemblies of ruthenium atoms, such as organometallic ruthenium nanoparticles.  相似文献   

6.
Nuclear spin-spin coupling constants (1)J(Hg-Hg) in the systems Hg(2)(2+) and Hg(3)(2+) represent the largest coupling constants so far observed in NMR experiments. We have performed a computational study on these ions, on Hg(2)(2+) complexes with 18-crown-6 and 15-crown-5, and on Hg(3)(2+) with solvent molecules and counterions. The results obtained with our recently developed program for the density functional computation of heavy nucleus spin-spin coupling constants are in good agreement with experiments. The data reveal that the bare ions Hg(2)(2+) and Hg(3)(2+) would afford much larger coupling constants than those experimentally observed, with an upper limit of approximately 0.9 MHz for Hg(2)(2+). This limit is much larger than that previously estimated by Hückel theory. It is demonstrated that in solution or due to complexation the experimentally determined values are much smaller than the free ion's coupling constants. With the help of intuitive MO arguments, it is illustrated how the environment strongly reduces the coupling constants in Hg(2)(2+) and Hg(3)(2+). The two-bond coupling constant (2)J(Hg-Hg) in Hg(3)(2+) is also examined.  相似文献   

7.
Two new types of pyrimidine-bridged Pt(II) complexes, (NR4)2[(PtCl3)2(mu-pm)] and cis- and trans-[Pt(R2SO)Cl2]2(mu-pm) where pm = pyrimidine, were synthesized and characterized by IR and multinuclear magnetic resonance spectroscopies and by crystallographic methods. Compounds with dimethylsulfoxide, tetramethylenesulfoxide, di-n-propylsulfoxide (DPrSO), di-n-butylsulfoxide (DBuSO), dibenzylsulfoxide (DBzSO), and diphenylsulfoxide were studied. The aqueous reaction of K2PtCl4 with pyrimidine produced the [(PtCl3)2(mu-pm)](2-) ions, which can be precipitated with a NR4(+) salt. The aqueous reaction of K[Pt(R2SO)Cl3] with pyrimidine in a 2:1 ratio produced the dinuclear species trans-[Pt(R2SO)Cl2]2(mu-pm). With DBuSO and DBzSO, the analogous cis isomers were also obtained. The 195Pt NMR resonances of the trans dimeric complexes were observed at higher field (av -3088 ppm) than the cis compounds (av -2948 ppm). The 195Pt coupling constants with the atoms of pyrimidine 3J(195Pt-1H) and 3J(195Pt-13C) are larger in the cis configuration than in the trans analogues. The crystal structures of two ionic complexes, (NR4)2[(PtCl3)2(mu-pm)] (R = Me and n-Bu), and of three mixed-ligands dimers, trans-[Pt(R2SO)Cl2]2(mu-pm) (R2SO = DMSO, DPrSO) and cis-Pt(DBuSO)Cl2]2(mu-pm), were determined.  相似文献   

8.
We reported the synthesis and characterization of peptide complexes of low-spin iron(III) [Fe(bpb)(py)2][ClO4] (1) and Na[Fe(bpb)(CN)2] (2) [H2bpb = 1,2-bis(pyridine-2-carboxamido)benzene; py = pyridine], where iron is coordinated to four nitrogen donors in the equatorial plane with two amide nitrogen anions and two pyridine nitrogen donors (Ray, M.; Mukherjee, R.; Richardson, J. F.; Buchanan, R. M. J. Chem. Soc., Dalton Trans. 1993, 2451). Chemical oxidation of 2 and a new low-spin iron(III) complex Na[Fe(Me6bpb)(CN)2].H2O (4) [synthesized from a new iron(III) complex [Fe(Me6bpb)(py)2][ClO4] (3) (S = 1/2)] [H2Me6bpb = 1,2-bis(3,5-dimethylpyridine2-carboxamido)-4,5-dimethylbenzene) by (NH4)2Ce(NO3)6 afforded isolation of two novel complexes [Fe(bpb)-(CN)2] (5) and [Fe(Me6bpb)(CN)2].H2O (6). All the complexes have been characterized by physicochemical techniques. While 1-4 are brown/green, 5 and 6 are violet/bluish violet. The collective evidence from infrared, electronic, M?ssbauer, and 1H NMR spectroscopies, from temperature-dependent magnetic susceptibility data, and from cyclic voltammetric studies provides unambiguous evidence that 5 and 6 are low-spin iron(III) ligand cation radical complexes rather than iron(IV) complexes. Cyclic voltammetric studies on isolated oxidized complexes 5 and 6 display identical behavior (a metal-centered reduction and a ligand-centered oxidation) to that observed for complexes 2 and 4, respectively. The M?ssbauer data for 6 are almost identical with those of the parent compound 4, providing compelling evidence that oxidation has occurred at the ligand in a site remote from the iron atom. Strong antiferromagnetic coupling (-2J > or = 450 cm(-1)) of the S = 1/2 iron atom with the S = 1/2 ligand pi-cation radical leads to an effectively S = 0 ground state of 5 and 6. The oxidized complexes display 1H NMR spectra (in CDCl3 solution), characteristic of diamagnetic species.  相似文献   

9.
The paramagnetic dinuclear complexes 1,8-bis(cobaltocenyl)naphthalene (2) and 1,8-bis[(pentamethyl-η(5)-cyclopentadienyl)(η(5)-cyclopentadiendiyl)cobalt(II)]naphthalene (4) were synthesized. The molecular structures were characterized by X-ray structure analysis and consisted of two cobaltocenes linked through a distorted naphthalene clamp. Electronic interactions between the two cobalt atoms were observed by cyclic voltammetric studies. Superconducting quantum interference device (SQUID) measurements of the pure compounds and diluted in their diamagnetic iron derivatives, as well as variable-temperature NMR spectroscopy experiments in solution are presented. Magnetic measurements revealed an antiferromagnetic coupling of the electrons in complexes 2 and 4. From NMR spectroscopy experiments, Curie behavior in the temperature range from -60 to +60 °C can be deduced. The electronic structure and magnetic behavior is supported by results of broken-symmetry DFT and multireference calculations along with UV/Vis spectroscopic data, which revealed an intramolecular through space π-π interaction between the cobaltocene units.  相似文献   

10.
The conformational equilibria of 3-X-cyclohexanol [X=F (1), Cl (2), Br (3), I (4), Me (5), NMe(2) (6) and MeO (7)] and of 3-X-methoxycyclohexane [X=F (8), Cl (9), Br (10), I (11), Me (12), NMe(2) (13) and MeO (14)] cis isomers were determined from low temperature NMR spectra and PCMODEL calculated coupling constants. The energy differences between aa and ee conformers were obtained from these data (DeltaG(J)(av) and DeltaG(PC)(av), respectively) and also by the additivity principle from data for the monosubstituted cyclohexanes (DeltaG(Ad)). H-1 and H-3 hydrogen vicinal coupling constants and DeltaG(J)(av) values showed that the diequatorial conformer is predominant in the conformational equilibrium of the compounds studied at low temperature. However, DeltaG(PC)(av) data show that compounds 6 and 7 constitute an exception, since they are almost equally populated by ee and aa at room temperature, due to stabilization of their aa conformer by an intramolecular hydrogen bond. DeltaG(Ad) values, obtained according to the additivity principle, show a better agreement for compounds 2 and 3, since the 1,3-diaxial steric effect is counterbalanced by the formation of an intramolecular hydrogen bond (IAHB). For the remaining compounds, DeltaG(Ad) values underestimate the energy differences, since the 1,3-diaxial steric effect, between X and OH or OCH(3), is absent in the monosubstituted compounds used as references. Moreover, the DeltaG(PC)(av), calculated from the coupling constants, obtained through the PCMODEL program, are rather smaller than the DeltaG(J)(av) values, since the program does not have parameters for the effect, observed in this report, of a substituent at gamma position on coupling constants values for the hydrogen under consideration.  相似文献   

11.
Four tetrameric nickel(II) pseudohalide complexes have been synthesized and structurally, spectroscopically, and magnetically characterized. Compounds 1-3 are isostructural and exhibit the general formula [Ni(2)(dpk·OH)(dpk·CH(3)O)(L)(H(2)O)](2)A(2)·2H(2)O, where dpk = di-2-pyridylketone; L = N(3)(-), and A = ClO(4)(-) for 1, L = NCO(-) and A = ClO(4)(-) for 2, and L = NCO(-) and A = NO(3)(-) for 3. The formula for 4 is [Ni(4)(dpk·OH)(3) (dpk·CH(3)O)(2)(NCO)](BF(4))(2)·3H(2)O. The ligands dpk·OH(-) and dpk·CH(3)O(-) result from solvolysis and ulterior deprotonation of dpk in water and methanol, respectively. The four tetramers exhibit a dicubane-like core with two missing vertexes where the Ni(II) ions are connected through end-on pseudohalide and oxo bridges. Magnetic measurements showed that compounds 1-4 are ferromagnetic. The values of the exchange constants were determined by means of a theoretical model based on three different types of coupling. Thus, the calculated J values (J(1) = J(2), J(3), and D) were 5.6, 11.8, and 5.6 cm(-1) for 1, 5.5, 12.0, and 5.6 cm(-1) for 2, 6.3, 4.9, and 6.2 cm(-1) for 3, and (J(1), J(2), J(3), and D) 6.9, 7.0, 15.2, and 4.8 cm(-1) for 4.  相似文献   

12.
[W(H)(NO)(PMe3)4] (1) was prepared by the reaction of [W(Cl)(NO)(PMe3)4] with NaBH4 in the presence of PMe3. The insertion of acetophenone, benzophenone and acetone into the W-H bond of 1 afforded the corresponding alkoxide complexes [W(NO)(PMe3)4(OCHR1R2)](R1 = R2 = Me (2); R1 = Me, R2 = Ph (3); R1 = R2 = Ph (4)), which were however thermally unstable. Insertion of CO2 into the W-H bond of yields the formato-O complex trans-W(NO)(OCHO)(PMe3)4 (5). Reaction of trans-W(NO)(H)(PMe3)4 with CO led to the formation of mer-W(CO)(NO)(H)(PMe3)3 (6) and not the formyl complex W(NO)(CHO)(PMe3)4. Insertion of Fe(CO)(5), Re2(CO)10 and Mn2(CO)10 into trans-W(NO)(H)(PMe3)4 resulted in the formation of trans-W(NO)(PMe3)4(mu-OCH)Fe(CO)4 (7), trans-W(NO)(PMe3)4(mu-OCH)Re2(CO)9 (8) and trans-W(NO)(PMe3)4(mu-OCH)Mn2(CO)9 (9). For Re2(CO)10, an equilibrium was established and the thermodynamic data of the equilibrium reaction have been determined by a variable-temperature NMR experiments (K(298K)= 104 L mol(-1), DeltaH=-37 kJ mol(-1), DeltaS =-86 J K(-1) mol(-1)). Both compounds 7 and 8 were separated in analytically pure form. Complex 9 decomposed slowly into some yet unidentified compounds at room temperature. Insertion of imines into the W-H bond of 1 was also additionally studied. For the reactions of the imines PhCH=NPh, Ph(Me)C=NPh, C6H5CH=NCH2C6H5, and (C6H5)2C=NH with only decomposition products were observed. However, the insertion of C10H7N=CHC6H5 into the W-H bond of led to loss of one PMe3 ligand and at the same time a strong agostic interaction (C17-H...W), which was followed by an oxidative addition of the C-H bond to the tungsten center giving the complex [W(NO)(H)(PMe3)3(C10H6NCH2Ph)] (10). The structures of compounds 1, 4, 7, 8 and 10 were studied by single-crystal X-ray diffraction.  相似文献   

13.
Complex formation of monomeric thallium(III) species with 2,2'-bipyridine (bipy) in dimethyl sulfoxide (dmso) and acetonitrile solutions was studied by means of multinuclear ((1)H, (13)C, and (205)Tl) NMR spectroscopy. For the first time, NMR signals of the individual species [Tl(bipy)(m)(solv)](3+) (m = 1-3) were observed despite intensive ligand and solvent exchange processes. The tris(bipy) complex was crystallized as [Tl(bipy)(3)(dmso)](ClO(4))(3)(dmso)(2) (1), and its crystal structure determined. In this compound, thallium is seven-coordinated; it is bonded to six nitrogen atoms of the three bipy molecules and to an oxygen atom of dmso. Metal-metal bonded binuclear complexes [(NC)(5)Pt-Tl(CN)(n)(solv)](n)(-) (n = 0-3) have been modified by attaching bipy molecules to the thallium atom. A reaction between [(NC)(5)Pt-Tl(dmso)(4)](s) and 2,2'-bipyridine in dimethyl sulfoxide solution results in the formation of a new complex, [(NC)(5)Pt-Tl(bipy)(solv)]. The presence of a direct Pt-Tl bond in the complex is convincingly confirmed by a very strong one-bond (195)Pt-(205)Tl spin-spin coupling ((1)J((195)Pt-(205)Tl) = 64.9 kHz) detected in both (195)Pt and (205)Tl NMR spectra. In solutions containing free cyanide, coordination of CN(-) to the thallium atom occurs, and the complex [(NC)(5)Pt-Tl(bipy)(CN)(solv)](-) ((1)J((195)Pt-(205)Tl) = 50.1 kHz) is formed as well. Two metal-metal bonded compounds containing bipy as a ligand were crystallized and their structures determined by X-ray diffractometry: [(NC)(5)Pt-Tl(bipy)(dmso)(3)] (2) and [(NC)(5)Pt-Tl(bipy)(2)] (3). The Pt-Tl bonding distances in the compounds, 2.6187(7) and 2.6117(5) A, respectively, are among the shortest reported separations between these two metals. The corresponding force constants in the molecules, 1.38 and 1.68 N/cm, respectively, were calculated using Raman stretching frequencies of the Pt-Tl vibrations and are characteristic for a single metal-metal bond. Electronic absorption spectra were recorded for the [(NC)(5)Pt-Tl(bipy)(m)(solv)] compounds, and the optical transition was attributed to the metal-metal bond assigned.  相似文献   

14.
The spin states of the iron(III) complexes with a highly ruffled porphyrin ring, [Fe(TEtPrP)X] where X = F-, Cl-, Br-, I-, and ClO4(-), have been examined by 1H NMR, 13C NMR, EPR, and M?ssbauer spectroscopy. While the F-, Cl-, and Br- complexes adopt a high-spin (S = 5/2) state, the I- complex exhibits an admixed intermediate-spin (S = 5/2, 3/2) state in CD2Cl2 solution. The I- complex shows, however, a quite pure high-spin state in toluene solution as well as in the solid. The results contrast those of highly saddled [Fe(OETPP)X] where the I- complex exhibits an essentially pure intermediate-spin state both in solution and in the solid. In contrast to the halide-ligated complexes, the ClO4(-) complex shows a quite pure intermediate-spin state. The 13C NMR spectra of [Fe(TEtPrP)ClO4] are characterized by the downfield and upfield shifts of the meso and pyrrole-alpha carbon signals, respectively: delta(meso) = +342 and delta(alpha-py) = -287 ppm at 298 K. The data indicate that the meso carbon atoms of [Fe(TEtPrP)ClO4] have considerable amounts of positive spin, which in turn indicate that the iron has an unpaired electron in the d(xy) orbital; the unpaired electron in the d(xy) orbital is delocalized to the meso positions due to the iron(d(xy))-porphyrin(a(2u)) interaction. Similar results have been obtained in analogous [Fe(TiPrP)X] though the intermediate-spin character of [Fe(TiPrP)X] is much larger than that of the corresponding [Fe(TEtPrP)X]. On the basis of these results, we have concluded that the highly ruffled intermediate-spin complexes such as [Fe(TEtPrP)ClO4] and [Fe(TiPrP)ClO4] adopt a novel (d(xz), d(yz))3(d(xy))1(d(z)(2)1 electron configuration; the electron configuration of the intermediate-spin complexes reported previously is believed to be (d(xy))2(d(xz)), d(yz))2(d(z)(2))1.  相似文献   

15.
A systematic ab initio study has been carried out to determine the MP2/6-31+G(d,p) structures and EOM-CCSD coupling constants across N-H-F-H-N hydrogen bonds for a series of complexes F(H(3)NH)(2)(+), F(HNNH(2))(2)(+), F(H(2)CNH(2))(2)(+), F(HCNH)(2)(+), and F(FCNH)(2)(+). These complexes have hydrogen bonds with two equivalent N-H donors to F(-). As the basicity of the nitrogen donor decreases, the N-H distance increases and the N-H-F-H-N arrangement changes from linear to bent. As these changes occur and the hydrogen bonds between the ion pairs acquire increased proton-shared character, (2h)J(F)(-)(N) increases in absolute value and (1h)J(H)(-)(F) changes sign. F(H(3)NH)(2)(+) complexes were also optimized as a function of the N-H distance. As this distance increases and the N-H...F hydrogen bonds change from ion-pair to proton-shared to traditional F-H...N hydrogen bonds, (2h)J(F)(-)(N) initially increases and then decreases in absolute value, (1)J(N)(-)(H) decreases in absolute value, and (1h)J(H)(-)(F) changes sign. The signs and magnitudes of these coupling constants computed for F(H(3)NH)(2)(+) at short N-H distances are in agreement with the experimental signs and magnitudes determined for the F(collidineH)(2)(+) complex in solution. However, even when the N-H and F-H distances are taken from the optimized structure of F(collidineH)(2)(+), (2h)J(F)(-)(N) and (1h)J(H)(-)(F) are still too large relative to experiment. When the distances extracted from the experimental NMR data are used, there is excellent agreement between computed and experimental coupling constants. This suggests that the N-H-F hydrogen bonds in the isolated gas-phase F(collidineH)(2)(+) complex have too much proton-shared character relative to those that exist in solution.  相似文献   

16.
New enantiopure imines (1-9) with a chiral substrate to control the stereochemistry of a newly created stereogenic center have been synthesized by reaction of the commercially available (1R)-(-)-myrtenal and different primary amines. The diastereomerically enriched lithium-scorpionate compounds [Li(κ(3)-mobpza)(THF)] (10) (mobpza = N-p-methylphenyl-(1R and 1S)-1-[(1R)-6,6-dimethylbicyclo[3.1.1]-2-hepten-2-yl]-2,2-bis(3,5-dimethylpyrazol-1-yl)ethylamide), [Li(κ(3)-mobpza)(THF)] (11) (mobpza = N-p-methoxyphenyl-(1R and 1S)-1-[(1R)-6,6-dimethylbicyclo[3.1.1]-2-hepten-2-yl]-2,2-bis(3,5-dimethylpyrazol-1-yl)ethylamide), [Li(κ(3)-fbpza)(THF)] (12) (fbpza = N-p-fluorophenyl-(1R and 1S)-1-[(1R)-6,6-dimethylbicyclo[3.1.1]-2-hepten-2-yl]-2,2-bis(3,5-dimethylpyrazol-1-yl)ethylamide), and [Li(κ(3)-clbpza)(THF)] (13) (clbpza = N-p-chlorophenyl-(1R and 1S)-1-[(1R)-6,6-dimethylbicyclo[3.1.1]-2-hepten-2-yl]-2,2-bis(3,5-dimethylpyrazol-1-yl)ethylamide) were obtained by a diastereoselective 1,2-addition of an organolithium reagent to imines in good yield and with good diastereomeric excess (ca. 80%). The complexes [LiCl(κ(2)-R,R-fbpzaH)(THF)] (14) and [LiCl(κ(2)-R,R-clbpzaH)(THF)] (15) were obtained in enantiomerically pure form by the treatment of THF solutions of 12 or 13 with NH(4)Cl. The enantiomerically pure amines (R,R-mbpzaH) (16), (R,R-mobpzaH) (17), (R,R-fbpzaH) (18), and (R,R-clbpzaH) (19) were obtained by hydrolysis of the lithium-scorpionate compounds 10-13 with H(2)O. The lithium compound 12 was reacted with [TiCl(4)(THF)(2)] or [ZrCl(4)] to give the enantiopure complexes [MCl(3)(κ(3)-R,R-fbpza)] [M = Ti (20), Zr (21)]. The amine compound 18 reacted with [MX(4)] (M = Ti, X = O(i)Pr, OEt; M = Zr; X = NMe(2)) to give the complexes [MX(3)(κ(3)-R,R-fbpza)] (22-24). The reaction of Me(3)SiCl with [Zr(NMe(2))(3)(κ(3)-R,R-fbpza)] (24) in different molar ratios led to the halide-amide-containing complexes [ZrCl(NMe(2))(2)(κ(3)-R,R-fbpza)] (25) and [ZrCl(2)(NMe(2))(κ(3)-R,R-fbpza)] (26) and the halide complex 21. The isolation of only one of the three possible diastereoisomers of complexes 25 and 26 revealed that chiral induction from the ligand to the zirconium center took place. The structures of these compounds were elucidated by (1)H and (13)C{(1)H} NMR spectroscopy, and the X-ray crystal structures of 5, 12, 14, 15, and 24 were also established.  相似文献   

17.
Palladium fluorophenyl complexes with different pincer ligands Pd(Ar)[2,6-(tBu(2)PCH(2))(2)C(6)H(3)] (13), Pd(Ar)[2,6-(tBu(2)PO)(2)C(6)H(3)] (14), Pd(Ar)[{2,5-(tBu(2)PCH(2))(2)C(5)H(2)}Fe(C(5)H(5))] (15), and Pd(Ar)[{2,5-(tBu(2)PCH(2))(2)C(5)H(2)}Ru(C(5)H(5))] (16) were synthesized by the reaction of LiAr (Ar = C(6)H(4)F-4) with the respective trifluoroacetate palladium pincer complexes 9-12. The molecular structures of 14 and 16 were determined by an X-ray crystallographic method. Complexes 13-16 and {Pd(Ar)[{2,5-(tBu(2)PCH(2))(2)C(5)H(2)}Fe(C(5)H(5))]}PF(6) (17) were studied by multinuclear NMR spectroscopy and cyclic voltammetry. On the basis of (19)F NMR chemical shifts and (1)J((13)C-(19)F) coupling constants, as well as Pd(II)/Pd(IV) oxidation potentials, electronic characteristics of the corresponding pincer ligands were elucidated.  相似文献   

18.
The donor strengths of the following triarylphosphine ligands P(Ar)(2)(Ar')(Ar = Ar'= 4-Me(3)SiC(6)H(4), 1b; 4-Me(3)CC(6)H(4), 1d; 4-F(3)CC(6)H(4), 1e; Ar = C(6)H(5), Ar'= 4-Me(3)SiC(6)H(4), 1c) have been evaluated experimentally and theoretically. The measurements of the J(P-Se) coupling constants of the corresponding synthesised selenides Se=P(Ar)(2)(Ar'), 2b,c and the DFT calculation of the energies of the phosphine lone-pair (HOMO) reveal insignificant influence on the electronic properties of the substituted phosphines when the trimethylsilyl group is attached to the aryl ring, in marked contrast to the strong electronic effect of the trifluoromethyl group. These triarylphosphine ligands P(Ar)(2)(Ar') reacted with (eta5-C(5)H(5))Co(CO)(2), (eta5-C(5)H(5))Co(CO)I(2) or PdCl(2) to yield the new compounds (eta5-C(5)H(5))Co(CO)[P(Ar)(2)(Ar')], 3b,d; (eta5-C(5)H(5))CoI(2)[P(Ar)(2)(Ar')], 4b-e; and PdCl(2)[P(Ar)(2)(Ar')](2), 5b,c respectively. These complexes have been characterized and their spectroscopic properties compared with those reported for the known triphenylphosphine complexes. Again, the contrast of the (31)P NMR and (13)C NMR chemical shifts or C-O or M-Cl stretching frequencies, when applied, does not show an important electronic effect on the metal complex of the trimethylsilyl substituted phosphines with respect to P(C(6)H(5))(3) derivatives. Solubility measurements of complexes 3a and 3b in scCO(2) were performed. We conclude that Me(3)Si groups on the triarylphosphine improve the solubility of the corresponding metal complex in scCO(2).  相似文献   

19.
Ab initio equation-of-motion coupled cluster singles and doubles calculations have been carried out on a variety of 2:1 FH:NH(3) complexes (F(b)H(b):F(a)H(a):NH(3)) to investigate the effects of structural changes on one- and two-bond spin-spin coupling constants across F(a)-H(a)-N and F(b)-H(b)-F(a) hydrogen bonds and to provide insight into experimentally measured coupling constants for 2:1 FH:collidine (2:1 FH:2,4,6-trimethylpyridine) complexes. Coupling constants have been computed for 2:1 FH:NH(3) equilibrium structures and proton-transferred perpendicular and open structures at 2:1 FH:NH(3), FH:pyridine, and FH:collidine geometries. (2h)J(Fa)(-)(N), (1)J(Fa)(-)(Ha), and (1h)J(Ha)(-)(N) exhibit expected dependencies on distances, angles, and the nature of the nitrogen base. In contrast, one- and two-bond coupling constants associated with the F(b)-H(b)-F(a) hydrogen bond, particularly (2h)J(F)()b(-)(F)()a, vary significantly depending on the F-F distance, the orientation of the hydrogen-bonded pair, and the nature of the complex (HF dimer versus the anion FHF(-)). The structure of the 2:1 FH:collidine complex proposed on the basis of experimentally measured coupling constants is supported by the computed coupling constants. This study of the structures of open proton-transferred 2:1 FH:NH(3), FH:pyridine, and FH:collidine complexes and the coupling constants computed for 2:1 FH:NH(3) complexes at these geometries provides insight into the role of the solvent in enhancing proton transfer across both N-H(a)-F(a) and F(b)-H(b)-F(a) hydrogen bonds.  相似文献   

20.
A series of bisimine-bridged dicatechol ligands 2-H(4)-5-H(4) were synthesized and were used to prepare triple-stranded dinuclear helicate-type complexes with a length of up to more than 2 nm. X-ray structural analyses of Na(4)[(2)(3)V(2)], Na(4)[(3)(3)Ti(2)], Na(4)[(4)(3)Ti(2)], and Na(4)[(5)(3)Ti(2)], as well as temperature-dependent NMR investigations of Na(4)[(4)(3)Ti(2)] and Na(4)[(5)(3)Ti(2)] show that, in the case of the rigid linear ligands 2 and 3, and of the ligand 5, which possesses C(2h) symmetry in its idealized structure, homochiral helicates are diastereoselectively formed. Ligand 4, on the other hand, with idealized C(2v) symmetry, leads with surprisingly high selectivity to the formation of the heterochiral meso-helicate. This is attributed to the ability of ligand 4 to adopt a less-restricted conformation in the meso compound than in the helical complex. NMR investigations indicate that both complex units of Na(4)[(4)(3)Ti(2)] invert (LambdaDelta-->DeltaLambda) simultaneously, while in the case of Na(4)[(5)(3)Ti(2)] a stepwise racemization proceeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号