首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Molar calorimetric enthalpy changes ΔrHm(cal) have been measured for the biochemical reactions {cAMP(aq) + H2O(l)=AMP(aq)} and {PEP(aq) + H2O(l)=pyruvate(aq) + phosphate(aq)}. The reactions were catalyzed, respectively, by phosphodiesterase 3,5-cyclic nucleotide and by alkaline phosphatase. The results were analyzed by using a chemical equilibrium model to obtain values of standard molar enthalpies of reaction ΔrHm for the respective reference reactions {cAMP(aq) + H2O(l)=HAMP(aq)} and {PEP3−(aq) + H2O(l)=pyruvate(aq) + HPO2−4(aq)}. Literature values of the apparent equilibrium constants K for the reactions {ATP(aq)=cAMP(aq) + pyrophosphate(aq)}, {ATP(aq) + pyruvate(aq)=ADP(aq) + PEP(aq)}, and {ATP(aq) + pyruvate(aq) + phosphate(aq)=AMP(aq) + PEP(aq) + pyrophosphate(aq)} were also analyzed by using the chemical equilibrium model. These calculations yielded values of the equilibrium constants K and standard molar Gibbs free energy changes ΔrGm for ionic reference reactions that correspond to the overall biochemical reactions. Combination of the standard molar reaction property values (K, ΔrHm, and ΔrGm) with the standard molar formation properties of the AMP, ADP, ATP, pyrophosphate, and pyruvate species led to values of the standard molar enthalpy ΔfHm and Gibbs free energy of formation ΔfGm and the standard partial molar entropy Sm of the cAMP and PEP species. The thermochemical network appears to be reasonably well reinforced and thus lends some confidence to the accuracy of the calculated property values of the variety of species involved in the several reactions considered herein.  相似文献   

2.
Microcalorimetry, spectrophotometry, and high-performance liquid chromatography (h.p.l.c.) have been used to conduct a thermodynamic investigation of the glutathione reductase catalyzed reaction {2 glutathionered(aq) + NADPox(aq)=glutathioneox(aq) + NADPred(aq)}. The reaction involves the breaking of a disulfide bond and is of particular importance because of the role glutathionered plays in the repair of enzymes. The measured values of the apparent equilibrium constant K for this reaction ranged from 0.5 to 69 and were measured over a range of temperature (288.15 K to 303.15 K), pH (6.58 to 8.68), and ionic strength Im (0.091 mol · kg−1 to 0.90 mol · kg−1). The results of the equilibrium and calorimetric measurements were analyzed in terms of a chemical equilibrium model that accounts for the multiplicity of ionic states of the reactants and products. These calculations led to values of thermodynamic quantities at T=298.15 K and Im=0 for a chemical reference reaction that involves specific ionic forms. Thus, for the reaction {2 glutathionered(aq) + NADPox3−(aq)=glutathioneox2−(aq) + NADPred4−(aq) + H+(aq)}, the equilibrium constant K=(6.5±4.4)·10−11, the standard molar enthalpy of reaction ΔrHom=(6.9±3.0) kJ · mol−1, the standard molar Gibbs free energy change ΔrGom=(58.1±1.7) kJ · mol−1, and the standard molar entropy change ΔrSom=−(172±12) J · K−1 · mol−1. Under approximately physiological conditions (T=311.15 K, pH=7.0, and Im=0.25 mol · kg−1 the apparent equilibrium constant K≈0.013. The results of the several studies of this reaction from the literature have also been examined and analyzed using the chemical equilibrium model. It was found that much of the literature is in agreement with the results of this study. Use of our results together with a value from the literature for the standard electromotive force Eo for the NADP redox reaction leads to Eo=0.166 V (T=298.15 K and I=0) for the glutathione redox reaction {glutathioneox2−(aq) + 2 H+(aq) + 2 e=2 glutathionered(aq)}. The thermodynamic results obtained in this study also permit the calculation of the standard apparent electromotive force E′o for the biochemical redox reaction {glutathioneox(aq) + 2 e=2 glutathionered(aq)} over a wide range of temperature, pH, and ionic strength. At T=298.15 K, I=0.25 mol · kg−1, and pH=7.0, the calculated value of E′o is −0.265 V.  相似文献   

3.
The osmotic and activity coefficients of aqueous sodium and potassium methyl sulfates have been determined at 25°C by the isopiestic method, in the molality range from ca.0.2 to 25 and 19 mol-kg–1, respectively. The results have been discussed in terms of the ion–ion and ion–water interactions on the basis of the Pitzer and Mayorga model and a method developed in our laboratory.  相似文献   

4.
The effects of pH and dissolved O2 on the γ-radiolysis of water were studied at an absorbed dose rate of 2.5 Gy s−1. Argon- or air-saturated water with no headspace was irradiated and the aqueous samples were analyzed for molecular radiolysis products (H2 and H2O2) as a function of irradiation time. The experimental results were compared with computer simulation results using a comprehensive water-radiolysis kinetic model, consisting of the primary radiolysis production, subsequent reactions and related acid–base equilibria. Both the experimental and computer model results were discussed based on the steady-state kinetic analysis of smaller reaction sets consisting of key production and removal reactions. While the main production path for a water decomposition product is the primary radiolysis, the main removal path varies. For H2O2 the main removal path is the reactions with eaq and OH, whereas for H2 it is the reaction with OH. As a result, the presence of a dissolved species, or a change in chemical environment, affects the concentrations of H2O2 and H2 through interaction with radicals eaq and OH. Over a wide range of conditions, there exist quantitative but simple relationships between the radical and the molecular product concentrations. The experimental and model analyses show that dissolved oxygen increases the steady-state concentrations of H2O2 and H2 by reacting with OH and eaq, and the impact of oxygen is more noticeable at pH below 8. The steady-state concentrations of water decomposition products are nearly independent of pH in the range 5–8. However, raising pH above the pKa value of the acid–base equilibrium of H (⇆eaq+H+) significantly increases [H2O2] and [H2] at the expenses of [OH] and [eaq]. At pH >10, the radiolytical production of O2 becomes significant, but at a finite rate. This considerably increases the time for the irradiated system to reach a steady state, and is responsible for different impacts on [H2O2] and [H2] due to radically produced O2, compared to impacts due to initially dissolved O2. Model sensitivity analysis has shown that at higher pHs (pH >10) transient species such as O2 and O3 play a major role in determining the steady-state concentration of molecular products H2 and H2O2. Further validation of the water radiolysis model, particularly at higher pHs, is also discussed.  相似文献   

5.
Isopiestic vapor-pressure measurements were made for {yMgCl2+(1−y)MgSO4}(aq) solutions with MgCl2 ionic strength fractions of y=(0,0.1997,0.3989,0.5992,0.8008, and 1) at the temperature 298.15 K, using KCl(aq) as the reference standard. These measurements for the mixtures cover the ionic strength range I=0.9794 to 9.4318 mol⋅kg−1. In addition, isopiestic measurements were made with NaCl(aq) as reference standard for mixtures of {xNa2SO4+(1−x)MgSO4}(aq) with the molality fraction x=0.5000 that correspond to solutions of the evaporite mineral bloedite (astrakanite), Na2Mg(SO4)2⋅4H2O(cr). The total molalities, m T=m(Na2SO4)+m(MgSO4), range from m T=1.4479 to 4.4312 mol⋅kg−1 (I=5.0677 to 15.509 mol⋅kg−1), where the uppermost concentration is the highest oversaturation molality that could be achieved by isothermal evaporation of the solvent at 298.15 K. The parameters of an extended ion-interaction (Pitzer) model for MgCl2(aq) at 298.15 K, which were required for an analysis of the {yMgCl2+(1−y)MgSO4}(aq) mixture results, were evaluated up to I=12.075 mol⋅kg−1 from published isopiestic data together with the six new osmotic coefficients obtained in this study. Osmotic coefficients of {yMgCl2+(1−y)MgSO4}(aq) solutions from the present study, along with critically-assessed values from previous studies, were used to evaluate the mixing parameters of the extended ion-interaction model.  相似文献   

6.
Isopiestic vapor-pressure measurements were made for Na2SO4(aq) from 0.11 to3.74 mol-kg–1 at 25.00°C and from 0.12 to 3.57 mol-kg–1 at 50.00°C, usingNaCl(aq) as the reference standard. Published isopiestic data, direct vaporpressures, emfs of reversible cells, freezing temperature depressions, boilingtemperature elevations, heat capacities, and dilution enthalpies for this system have beencritically assessed and recalculated in a consistent manner. Parameters for Pitzer'smodel and a mole fraction-based thermodynamic model were evaluated. Themole fraction-based thermodynamic model for Na2SO4(aq) is valid from thefreezing temperatures of the solutions to 150.5°C. Pitzer's model represents theosmotic coefficients and emfs essentially to experimental accuracy at 25 and50°C provided that the third virial coefficient was ionic-strength dependent.  相似文献   

7.
《Fluid Phase Equilibria》1999,164(2):275-284
The osmotic coefficients of the mixed electrolyte solution {yNaH2PO4+(1−y)Na2SO4}(aq) have been measured by the isopiestic method, at the temperature T=298.15 K. The activity coefficients of NaH2PO4 and Na2SO4 were calculated by Scatchard's neutral-electrolyte method and by Pitzer and Kim's treatment for mixed-electrolyte solutions. The Scatchard interaction parameters are used for calculation of the excess Gibbs energy as a function of ionic strength and ionic-strength fraction of NaH2PO4. Also, the Zdanovskii's rule of linearity is tested.  相似文献   

8.
取少量Fe2(SO4)3·xH2O晶体溶于蒸馏水,得浅紫色溶液,这就是Fe(H2O)63+的颜色.若加入浓HCl,生成FeCl4-(β4=14)使溶液显黄色.  相似文献   

9.
Measurements have been made of the Raman spectra of aqueous solutions of Be(ClO4)2, BeCl2, (NH4)2SO4 and BeSO4 to 50 cm−1. In some cases low concentrations (0.000770 mol⋅kg−1) have been used and two temperatures (23 and 40 °C) were studied. In BeSO4(aq), the ν 1-SO42-\mathrm{SO}_{4}^{2-} mode at 980 cm−1 broadens with increasing concentration and shifts to higher wavenumbers. At the same time, a band at 1014 cm−1 is detectable with this mode being assigned to [BeOSO3], an inner-sphere complex (ISC). Confirmation of this assignment is provided by the simultaneous appearance of stretching bands for the Be2+-OSO32-\mathrm{Be}^{2+}\mbox{-}\mathrm{OSO}_{3}^{2-} bond of the complex at 240 cm−1 and for the BeO4 skeleton mode of the [(H2O)3BeOSO3] unit at 498 cm−1. The ISC concentration increases with higher temperatures. The similarity of the n1-SO42-\nu_{1}\mbox{-}\mathrm{SO}_{4}^{2-} Raman bands for BeSO4 in H2O and D2O is further strong evidence for formation of an ISC. After subtraction of the ISC component at 1014 cm−1, the n1-SO42-\nu_{1}\mbox{-}\mathrm{SO}_{4}^{2-} band in BeSO4(aq) showed systematic differences from that in (NH4)2SO4(aq). This is consistent with a n1-SO42-\nu_{1}\mbox{-}\mathrm{SO}_{4}^{2-} mode at 982.7 cm−1 that can be assigned to the occurrence of an outer-sphere complex ion (OSCs). These observations are shown to be in agreement with results derived from previous relaxation measurements. Infrared spectroscopic data show features that are also consistent with a beryllium sulfato complex such as the appearance of a broad and weak n1-SO42-\nu_{1}\mbox{-}\mathrm{SO}_{4}^{2-} mode at ∼1014 cm−1, normally infrared forbidden, and a broad and asymmetric n3-SO42-\nu_{3}\mbox{-}\mathrm{SO}_{4}^{2-} band contour which could be fitted with four band components (including n3-SO42-(aq)\nu_{3}\mbox{-}\mathrm{SO}_{4}^{2-}(\mathrm{aq})). The formation of ISCs in BeSO4(aq) is much more pronounced than in the similar MgSO4(aq) system studied recently.  相似文献   

10.
Two new complex anions, [Cr(N3)(S-pdtra)]– and [Cr(N3)(edtrp)]–, were obtained in solution by N3–/HN3 anation of the aqua analogues (S-pdtra = S-propane-1,2-diamine-N,N,N-triacetate, edtrp = ethylenediamine-N,N,N-tripropionate). Aquation of these species in acidic media leads to the same geometrical isomers as those used for the synthesis. The aquation rate is strongly dependent upon [H] and is substantially higher in D2O than in H2O. Protonation of the coordinated azide was not observed spectrophotometrically. The rate law and activation parameters have been determined and discussed.  相似文献   

11.
In situ electrochemical scanning tunnelling microscopic (STM) measurements of the growth mechanism of the passive film on Ni(111) single-crystal surfaces in an alkaline 1 mM NaOH aqueous solution are reported. Stepping the potential from –1,050 mV/SHE, where the terrace topography of the bare Ni(111) surface is observed, to –800 mV generates a continuous step flow resulting from a slow dissolution of the surface localized at step edges of the surface. Islands are observed on the terraces that possibly correspond to the specific adsorption of hydroxide anions, without formation of an ordered structure. The nucleation of the passivating oxide is preferentially located at the step edges at this potential. The ongoing dissolution at the nearby step edges not yet passivated leads to the formation of isolated 2D islands of the passivating oxide. At –780 mV, the formation of extended islands constituted of 2D nanocrystals (~2 nm) is observed on the substrate terraces and blocks the dissolution at the step edges. The nanocrystals have an hexagonal lattice assigned to the formation of a monolayer of Ni(OH)2(0001) in strained epitaxy on Ni(111). At E–630 mV, the formation of a facetted topography is observed as a result of the 3D growth of the passive film in tilted epitaxy on the substrate. Its structure is in excellent agreement with that expected for an unstrained 3D -Ni(OH)2(0001) layer. This 3D layer of -Ni(OH)2 is not reduced by a cathodic sweep of the potential down to –1,500 mV whereas the 2D islands are reduced under similar conditions. Ageing of the passive film shifts cathodically the potential of non-reversibility.Special issue for Prof. Gyorgy Horanyi on the occasion of his 70th birthday, in recognition of his outstanding contribution to Electrochemistry and Material Science.  相似文献   

12.
Mercury(II) halide complexes [HgX2(P(2-py)3)2] (X?=?Br (1), Cl (2)) and [HgX2(PPh(2-py)2)2] (X?=?Br (3), Cl (4)) containing P(2-py)3 and PPh(2-py)2 ligands (P(2-py)3 is tris(2-pyridyl)phosphine and PPh(2-py)2 is bis(2-pyridyl)phenylphosphine) were synthesized in nearly quantitative yield by reaction of corresponding mercury(II) halide and appropriate ligands. The synthesized complexes are fully characterized by elemental analysis, melting point determination, IR, 1H, and 31P-NMR spectroscopies. Furthermore, the crystal structure of [HgBr2(PPh(2-py)2)2] determined by X-ray diffraction is also reported.  相似文献   

13.
β-Co(OH)2 and Mg(OH)2 nanoplates were synthesized via a facile template-free hydrothermal approach. The different conditions of preparation and catalytic properties of the products were studied and discussed. The products were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, selected area electron diffraction(SAED), and gas chromatograph.  相似文献   

14.
Treatment of 1-arylmethyl-2-(2-cyanoethyl)aziridines with a nitrile hydratase afforded the corresponding 2-(2-carbamoylethyl)aziridines, which underwent rearrangement into 5-hydroxypiperidin-2-ones upon heating under microwave irradiation. In addition, treatment of 2-(2-cyanoethyl)aziridines with a nitrilase selectively afforded 5-hydroxypiperidin-2-ones in good yields. On the other hand, chemical hydrolysis of 2-(2-cyanoethyl)aziridines using KOH in EtOH/H(2)O furnished the corresponding potassium 3-(aziridin-2-yl)propanoates, which, upon acidification with acetic acid, smoothly rearranged into 4-(aminomethyl)butyrolactones.  相似文献   

15.
Blockcopolymersasidealcompatibilizershavefoundwideapplicationsinpolymerblends.Forblockcopolymerscontainingpolarblocks,itsadditiontoablendcontainingpolarcomponentsleadstothedecreaseininterfacialtensionbetweentheimmisciblephasesoftheblend,theincreaseinc…  相似文献   

16.
IntroductionGadoliniumchelatesareveryimportantbecauseoftheirpotentialbiologicalapplicationsintheareaofmagneticresonanceimaging(MRI) .Thegadoliniumchelateofdiethylenetriaminepentaaceticacid(DTPA )wasthefirstMRIcontrastagentinclinicaluse .How ever,Gd DTPA ,asanextracellularcontrastagent,hasnoliver specificity .Theintroductionofanaddi tionallipophilicsubstitutenttoanyoneofthefivemethylenesoftheaceticacidresiduesortoanyoneofthefourcarbonatomsofthebackboneinDTPAmaychangethetissuespecificity…  相似文献   

17.
The present paper covers the synthesis and the characterization of ligand 2-decyl-3, 6, 9-tris(carboxymethyl)-3,6,9-triazaundecan-1,11-dioic acid, H5L, and its Gd(Ⅲ) chelate. The protonation constants for H5L(lgKHi=10.90, 8.50, 4.55, 2.92, 2.20) and the stability constant for GdL2- (lgKGdL2-=22.80) were determined by means of potentiometric titration. They are similar to the corresponding values of DTPA and Gd-DTPA, respectively. The results obtained show that the basicity of the ligand and the stability constant of its Gd(Ⅲ) chelate are not obviously altered after the introduction of a linear chain decyl group into the terminal acetic acid residue of DTPA. The Gd(Ⅲ) chelate may be a potential contrast agent with liver-specificity for magnetic resonance imaging(MRI).  相似文献   

18.
In recent years,the organic ferromagnets have drawn growing attention due to their characteristics of structural diversities,low density,and readily processing1-3.Design and synthesis of magnetic polymers are one of great challenges in today′s magnetic material research,and some significant achievements have been made in this field4,5.In this article,we describe the synthesis of acrylamide-type polymer with pendent thiazolyl groups(Scheme1).The as-prepared polymer exhibited better solubility …  相似文献   

19.
Treatment of [Cy2P(CH2OH)2]Cl with MeNH2 in the presence of Et3N affords a high yield of the phosphine (Cy2PCH2)2NMe (1) (dcpam) which has been characterised by a single crystal X-ray structure. Treatment of [PtX2(COD)], (COD=cyclo-octa-1,5-diene, X= Cl or I) with (1) affords the platinum complexes [PtX2{(Cy2PCH2)2NMe}] (2). The chloride complex, (2a), reacts with t-BuNC to afford [PtCl(t-BuNC)-{(Cy2PCH2)2NMe}]Cl (3) and treatment of (2a) with 2-mercapto-1-methylimidazole affords [Pt{SCN(Me)CHCH=N(Me)}{Cy2PCH2)2NMe}]Cl (5). The reaction of (2a) with 2-acetamidoacrylic acid in the presence of silver(I) oxide affords the carbon bonded isomer (8a) only whereas a similar reaction using [PtCl2{Ph2P-(CH2)3PPh2}] affords a mixture of the azaallyl complex (7) and the carbon bonded isomer (8b) which can be separated by fractional crystallisation. The crystal structures of PtX2{(Cy2PCH2)2NMe}] are also reported.  相似文献   

20.
Thioselenohalide complexes Mo2(μ-S2)2Cl6(SeCl2)2 (I), Mo2(μ-S2)2Br6(SeBr2)2 (II), and W2(μ-S2)2Br6(SeBr2)2 (III) were synthesized by the reactions of corresponding metal halides or carbonyls or molybdenum metal with excesses of S2 X 2+Se2 X 2 mixtures. The complex W2(μ-S2)2Cl6(SeCl2)2 (IV) was obtained by an exchange reaction between (III) and excess of Se2Cl2. Coordination of the neutral SeX 2 ligands to thiohalidesM 2(μ-S2)2 X 6 results in higher thermal stability, and suggests the possibility to synthesize SeX 2 complexes of the unstable parent tungsten thiohalides. An unusual oxidative addition reaction of (I) was detected: {fx27-1} Both (I) and (IV) were characterized by X-ray crystal structure analysis. They are isostructural and form discrete molecules. Bridging S 2 2? ligands are coordinated perpendicularly to the metal-metal bond;d(M?M)=2.8066 Å and 2.793 Å for I and IV, respectively. Nonequivalence of chlorine atoms which are bound to the metal atom, relate to nonequivalence of halogen atoms in the complexesM 2(μ?S2)2 X 8 2? . Chlorine atomstrans to SeCl2 ligands form short bonds with the metal; the corresponding35Cl NQR frequency is increased. The selenium dichloride ligand is ambidentate. The selenium atom binds as a donor to the metal and as an acceptor to two chlorine atoms which are also bound covalently to the same metal atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号