首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electronic properties of germanium and tin clusters containing a transition- or lanthanide-metal atom from group 3, 4, or 5, MGe(n) (M = Sc, Ti, V, Y, Zr, Nb, Lu, Hf, and Ta) and MSn(n) (M = Sc, Ti, Y. Zr, and Hf), were investigated by anion photoelectron spectroscopy at 213 nm. In the case of the group 3 elements Sc, Y, and Lu, the threshold energy of electron detachment of MGe(n)(-) exhibits local maxima at n = 10 and 16, while in the case of the group 4 elements Ti, Zr, and Hf, it exhibits a local minimum only at n = 16, associated with the presence of a small bump in the spectrum. A similar behavior is observed for MSn(n)(-) around n = 16, and these electronic characteristics of MGe(n) and MSn(n) are closely related to those of MSi(n). Compared to MSi(n), however, the larger cavity size of a Ge(n) cage allows metal atom encapsulation at a smaller size n. A cooperative effect between the electronic and geometric structures of clusters with a large cavity of Ge(16) or Sn(16) is discussed together with the results of experiments that probe their geometric stability via their reactivity to H(2)O adsorption.  相似文献   

2.
From mixtures of PbO, MO2 (M = Ti, Zr, Hf), SnO, and TeO2, four new oxides Pb2[M1.5Te0.5]O6.5 have been obtained as yellow powders giving X-ray diffraction patterns characteristic of cubic pyrochlores, S.G. Fd3 m (No. 227), Z = 8, and a/Å values from 10.3529(1) (M = Ti) to 10.7406(1) (M = Zr). The best R factors, from 0.0465 (M = Ti) to 0.0242 (M = Hf), were obtained for Pb in 16(c) positions, M and Te (3:1) randomly distributed in 16(d), oxygen atoms in 48(f) and in a half of the 8(a) sites, and x values for the oxygen positional parameter (origin at center, 3 m) from 0.436 (M = Ti) to 0.421 (M = Zr). For the compounds of Ti and Zr the angles of the coordination polyhedra around the metals are reported. For seven-coordinated PbII the stereochemical influence of the nonbonded electron pair is shown. Apparent interatomic distances agree with those calculated.  相似文献   

3.
The electronic structures of binary M21S8 (M = Nb, Zr) and isostructural ternary (M,M')21S8 (M, M' = Hf, Ti; Nb, Ta) phases have been studied by means of extended Hückel tight-binding band structure calculations. For the valence electron concentration in the binary group 5 metal phase Nb21S8, metal-metal bonding is optimized whereas, in the isostructural group 4 metal phase Zr21S8, metal-metal bonding levels exist above the Fermi level. However, the electronic structure analysis suggests a stable structure for M21S8 phases with group 4 metals and that (M,M')21S8 phases with mixed group 4 and group 5 metals, even if not yet reported, could well exist. In the ternary phase Nb6.9Ta14.1S8, a linear relationship exists between the magnitude of the metal-metal bonding capacity (as expressed by the total metal-metal Mulliken overlap population) of each crystallographically independent metal site and the occupation of the site with the heavier metal (i.e., the element with the greater bonding capability). The situation is quite more complex in Hf7.5Ti13.5S8, where the metal-metal bonding capacity of each site, differences in electronegativity between Ti and Hf, and site volume arguments must be taken into account to understand the metal site occupation.  相似文献   

4.
Dinuclear titanium, zirconium, and hafnium oxide clusters, M2O2 and M2O4 (M = Ti, Zr, Hf) have been prepared and characterized by matrix isolation infrared spectroscopy and quantum chemical calculations. The M2O2 clusters were formed through the reactions of metal dimers and O2 in solid argon upon sample annealing. Theoretical calculations indicate that the Ti2O2 cluster has a singlet ground state with a nonplanar cyclic C(2v) structure with a strong Ti-Ti bond, while the Zr2O2 and Hf2O2 clusters have planar cyclic structures. The M2O4 clusters were characterized to have a closed-shell singlet ground state with a nonplanar C2h symmetry, which were formed from the dimerization of the metal dioxide molecules.  相似文献   

5.
Zhao Z  Zhou XF  Wang LM  Xu B  He J  Liu Z  Wang HT  Tian Y 《Inorganic chemistry》2011,50(19):9266-9272
The high-pressure phase transitions of B1-structured stoichiometric transition metal carbides (TMCs, TM = Ti, Zr, Hf, V, Nb, and Ta) were systematically investigated using ab initio calculations. These carbides underwent universal phase transitions along two novel phase-transition routes, namely, B1 → distorted TlI (TlI') → TlI and/or B1 → distorted TiB (TiB') → TiB, when subjected to pressure. The two routes can coexist possibly because of the tiny enthalpy differences between the new phases under corresponding pressures. Four new phases result from atomic slips of the B1-structured parent phases under pressure. After completely releasing the pressure, taking TiC as representative of TMCs, only its new TlI'-type phase is mechanically and dynamically stable, and may be recovered.  相似文献   

6.
A new class of molecular clusters with the composition M8C12 (M=Ti, V, Hf and Zr) has been discovered. The cation, anion and neutral species are unusually abundant and stable. In the case of the Zr-C system, evidence has also been obtained for growth through the development of multicage structures.  相似文献   

7.
Reactions of C(6)H(5)Li and 4-CH(3)C(6)H(4)Li with halides of Ti, Ir, Hf, and Nb lead to the formation of homoleptic organometallic anions of these metals. Owing to their thermal instability and their sensitivity towards H(2) O and O(2) , these compounds are characterized by single-crystal structure determinations at low temperature, whereas other physical data could only be obtained occasionally. Three pentacoordinate complex anions [Ti(C(6)H(5))(5)](-), [Ti(4-CH(3)C(6)H(4))(5)](-), and [Zr(C(6)H(5))(5)](-) have square-pyramidal structures that display only slight deviations from the ideal geometry, in contrast to the already known structures of [Ti(CH(5))(5)](-). The hexacoordinate complex anions [Zr(C(6)H(5))(6)](2-), [Zr(4-CH(3)C(6)H(4))(6)](2-), [Nb(C(6)H(5))(6)](2-), and [Nb(4-CH(3)C(6)H(4))(6)](2-) all have trigonal-prismatic structures, in accord with the known hexamethyl complex dianions. In contrast, the hexacoordinate complex anion [Hf(C(6)H(5))(6)](2)(-) has an octahedral or close to octahedral structure, in contrast to the known trigonal-prismatic structures of [Ta(C(6)H(5))(6)](-) and [Ta(4-CH(3)C(6)H(4))(6) (-). A qualitative explanation for this structural variability is given.  相似文献   

8.
The crystal structure of Mg51Zn20, a phase designated conventionally as “Mg7Zn3,” has been determined by the single-crystal X-ray diffraction method. It was solved by the examination of a Patterson synthesis, and refined by the ordinary Fourier and least-squares method; the R value obtained was 4.8% for 1167 observed reflections. The crystal is orthorhombic, space group Immm, with a = 14.083(3), b = 14.486(3), c = 14.025(3) Å, and Z = 2. There are 18 independent atomic sites, Zn1Zn6, Mg1Mg10, A, and B, and the last two sites are statistically occupied by Zn and Mg atoms with the occupancies; 0.46(2)Zn7 + 0.52(2)Mg11 and 0.24(2)Zn8 + 0.74(2)Mg12, for A and B, respectively. The structure of the crystal is described as an arrangement of icosahedral coordination polyhedra, to which all the atomic sites but Zn3 site belong. In this arrangement the Zn atoms other than the Zn3 and Zn8(B) center the icosahedral coordination polyhedra with coordination number 12. The Zn3, Zn8 atoms, and all the Mg atoms except Mg11(A) are located at the centers of various coordination polyhedra with the coordination numbers from 11 to 15. The distances between neighboring atoms are 2.71–3.07, 2.82–3.65, and 2.60–3.20 Å for ZnZn, MgMg, and ZnMg, respectively.  相似文献   

9.
Actinide (AThCm)-noble metal phases with platinum, palladium, rhodium, and iridium (B)- and lanthanide-noble metal phases with platinum and palladium have been prepared by reduction of corresponding oxides or fluorides in the presence of noble metals by extremely purified hydrogen. Alloy phases of composition AB2, AB3, and/or AB5 have been identified, most of which crystallize in the Cu2Mg, Cu3Au, Ni3Ti, Cd3Mg, Ni5U, and Pt5Sm types of structure. The lattice constants of isostructural series show a trend which also is known for the radii of the actinide elements. Analytical data, self-irradiation effects, magnetic data, nuclear γ resonance spectra, and thermal behaviour of selected alloy phases as well as the preparation of alloy phases of some other transition and main group elements, e.g., Zr, Hf, Nb, Ta, MgBa, are reported.  相似文献   

10.
Preparation and use of a resin with 1.8-dihydroxynaphthalene-O,O-diacetic acid as chelating group are described. Besides the separation of many of the common interfering ions it also permits the separation of Hf. The following ions could be separated quantitatively: Mg(II), Pb(II), Cu(II), Fe(III), La(III), Ce(IV), Th(IV), Ti(IV), and U(VI). During these and further qualitative and quantitative experiments no interfering ions could be found. A method for the separation of95Zr from its daughter nuclide95Nb is also described. The main problem proved to be the separation of Zr(IV) and Hf(IV), owing to their close resemblance. To accomplish quantitative determination of Zr and Hf without any separation,95Zr and175+181Hf radioisotopes were used. The chelating resin permits the separation of 95% of Hf(IV) from an equimolar solution. The main part of Hf(IV) is eluated by 2M hydrochloric acid, and subsequently Zr(IV) by 0.75M oxalic acid. The rest of Hf is enriched in the first fractions of the oxalic acid eluate, so that when eliminating these, even after a single step experiment hafnium free from zirconium and a rather pure fraction of zirconium are obtained. Even under extreme conditions of concentration (Zr∶Hf=91∶1) 75% of Hf can be separated free from Zr in a single step experiment.

Vorgetragen auf der IUPAC-Tagung in Prag, 1967.  相似文献   

11.
The FT-IR spectra of 18 (R-Cp)2M(NCS)2 were measured. The M-Cp, M-NCS (M=Ti, Zr, Hf) and other vibration modes were reasonably assigned. All complexes of (R-Cp)2M(NCS)2 determined in this paper are bonded by N-M, and the absorption of upsilon(s)(M-Cp)(A1) (M=Ti, Zr and Hf) vibration all appear in 365 cm(-1) or so, while upsilon(as)(M-Cp)(B) appear successively around 420, 350 and 320 cm(-1) in order of Ti, Zr and Hf. The influence of the center metal atoms and the substituents on cyclopentadienyl upon the spectra was discussed. It is mainly in far infrared region that center metal atoms influence upon the infrared spectra. The influence of the substituents to cyclopentadienyling upon its vibration is not significant. Only between 1500 and 1480 cm(-1) did a new absorbing peak appear due to the introduction of substituents to activate upsilon(CC) vibration.  相似文献   

12.
The herewith-introduced antimonides Zr(11)Sb(18) and Zr(10.4)V(0.6)Sb(18) were prepared by high-temperature techniques; both arc-melting and solid-state reactions at 1200 degrees C starting from alpha-ZrSb(2) and the metals Zr and V in powder form are possible methods. These isostructural compounds represent an unprecedented metal:antimony ratio of 11:18 and form a new structure type. Zr(11)Sb(18) crystallizes in the tetragonal space group I(-)42d, with the lattice dimensions a = 676.94(4) pm and c = 6007.3(5) pm, while the V-containing phase forms a slightly smaller unit cell with a = 676.48(8) pm and c = 6005.6(9) pm (Z = 4). Their structures are comprised of an Sb atom substructure with several intermediate Sb-Sb bonds starting at 311 pm, which is reminiscent of that found in the series (Ti,M)(5)Sb(8) (M = Zr, Hf, Nb, Mo) published last year. Interwoven with this network is the Zr atom network, which forms a diamond-like metal atom substructure with long Zr-Zr contacts of ca. 360 pm. Band structure calculations based on the linear muffin tin orbital approach reveal these antimonides to be mainly stabilized by strong M-Sb and intermediate Sb-Sb bonds, and additionally--to the smallest extent--by M-M bonds (M = Zr, V). In agreement with the electronic structure calculations, Zr(11)Sb(18) is metallic with a small positive Seebeck coefficient.  相似文献   

13.
Of the most common cubic intermetallic structure types, several (MgCu(2), Cu(5)Zn(8), Ti(2)Ni, and alpha-Mn) have superstructures with unusual symmetry properties. These superstructures (Be(5)Au, Li(21)Si(5), Sm(11)Cd(45), and Mg(44)Ir(7)) have the unusual property of pairs of perpendicular pseudo fivefold axes, most apparent in their X-ray diffraction patterns. The current work shows that an 8D to 3D projection method cleanly describes most (and in one case, all) of the atomic positions in the four superstructures mentioned above. This type of projection, which maps the E(8) lattice (a mathematically simple 8D crystal) into 3D space, combines the desired higher dimensional point group's perpendicular fivefold rotations with 3D translational symmetry-exactly what we see in the experimental crystal structures. The projection method successfully accounts for all heavy atom positions in the four superstructures, and at least 60-70 % of the light atom positions. The results suggest that all of these structures, previously known to be connected only by qualitative similarities in their atomic "clusters", are approximants of a single, as-yet unknown, class of quasicrystal.  相似文献   

14.
Elemental analysis of special materials by X-ray fluorescence spectrometry   总被引:1,自引:0,他引:1  
The special materials like phosphor bronze for P, Fe, Ni, Cu, Zn, Sn and Pb; mild steel for P, S, V, Cr, Mn, Co, Ni, Cu, As, Nb, Sb and W; special alloys for Ti and Mo, zircaloy and zirconium oxide for Hf; and zircon ore for Zr have been analyzed by X-ray fluorescence spectrometry (XRFS). The measured values along with certified values, precision and accuracy have been given for all the elements analyzed. Some of these materials have also been analyzed by atomic absorption spectrometry (AAS), neutron activation analysis (NAA) and inductively coupled plasma emission spectrometry (ICP-ES). The analytical data of XRFS are in agreement with the results obtained by AAS-ICP-ES and NAA. In most cases the precision is within ±2% and accuracy is ±4%. The precision and accuracy for S, P, Ni and Hf are poor at low concentrations. Practical low detection limit of about 40 g/g of Hf in zirconium matrix has been achieved. It is established that precise and accurate determination of Ti and Mo in special alloys is possible using XRFS.  相似文献   

15.
(M',Ti)5Sb8 was prepared from the melt by arc-melting suitable mixtures of Ti, TiSb2, and M'Sb2, respectively. This phase exists at least with M' = Zr, Hf, Nb, and Mo. A significant phase range for Zr delta Ti5 - delta Sb8 was found to be within 1.10(8) < or = delta < or = 3.9(3). All (M',Ti)5Sb8 representatives investigated occur in the same, yet hitherto unknown structure type, as determined by single-crystal analyses. E.g., the lattice dimensions of Zr delta Ti5 - delta Sb8 range from a = 654.49(3) pm, c = 2662.4(2) pm for delta = 1.10(8) to a = 671.06(6), c = 2679.7(4) pm for delta = 3.9(3) (space group I4(1)22, No. 98, Z = 4). The three chemically inequivalent metal sites are statistically occupied by different mixtures of the M atoms M' and Ti, included in a three-dimensional network of Sb atoms on 6- to 8-fold Sb coordinated positions. Sb-Sb bonds of intermediate lengths occur in addition to the predominating heteronuclear M-Sb bonds. Physical property measurements of (Zr,Ti)5Sb8 reveal these phases being metallic exhibiting specific resistances of several m omega.cm and a small Seebeck coefficient at room temperature, in agreement with the results of the electronic structure calculations on the LMTO and extended Hückel levels. The calculations indicate a possible change to semiconducting properties by heavy doping.  相似文献   

16.
This paper focuses on the development of potential single source precursors for M-N-Si (M = Ti, Zr or Hf) thin films. The titanium, zirconium, and hafnium silylimides (Me(2)N)(2)MNSiR(1)R(2)R(3) [R(1) = R(2) = R(3) = Ph, M = Ti(1), Zr (2), Hf (3); R(1) = R(2) = R(3) = Et, M = Ti (4), Zr (5), Hf (6); R(1) = R(2) = Me, R(3) = (t)Bu, M = Ti (7), Zr (8), Hf (9); R(1) = R(2) = R(3) = NMe(2), M = Ti (10), Zr (11), Hf (12)] have been synthesized by the reaction of M(NMe(2))(4) and R(3)R(2)R(1)SiNH(2). All compounds are notably sensitive to air and moisture. Compounds 1, 2, 4, and 7-10 have been structurally characterized, and all are dimeric, with the general formula [M(NMe(2))(2)(μ-NSiR(3))](2), in which the μ(2)-NSiR(3) groups bridges two four-coordinate metal centers. The hafnium compound 3 possesses the same basic dimeric structure but shows additional incorporation of liberated HNMe(2) bonded to one metal. Compounds 11 and 12 are also both dimeric but also incorporate additional μ(2)-NMe(2) groups, which bridge Si and either Zr or Hf metal centers in the solid state. The Zr and Hf metal centers are both five-coordinated in these species. Aerosol-assisted CVD (AA-CVD) using 4-7 and 9-12 as precursors generates amorphous films containing M, N, Si, C, and O; the films are dominated by MO(2) with smaller contributions from MN, MC and MSiON based on XPS binding energies.  相似文献   

17.
The structural and electronic properties of the PZT materials PbZr0.5Ti0.5O3 and PbZr0.375Ti0.625O3 were studied by means of a Hartree–Fock quantum chemical semiempirical method that employs a periodic large unit cell (LUC) model. The atomic relaxation observed upon introduction of the Zr impurities resulted in outward oxygen atom displacements along the 〈100〉 direction for the cubic phases and varied oxygen and lead atom movements for the tetragonal structures. For these materials, the conduction bands (CB) were composed mainly of Pb 6p atomic orbitals with less important contributions of Zr 4d and Ti 3d states. The upper valence band (UVB) for the cubic phases was mostly Pb 6s in nature, with minor contribution of O 2p atomic orbitals. The tetragonal phase on the other hand was formed by Pb 6s with some contribution of admixed O 2p with Zr s atomic orbitals. The optical band gap (ΔSCF method) was found to decrease going from the cubic to the tetragonal phase in both titanates. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 95: 37–43, 2003  相似文献   

18.
Ternary tetralanthanum trimagnesium tricontazinc, La4.27Mg2.89Zn30, crystallizes as a new structure type. It belongs to the structural family that may be derived from the hexagonal CaCu5 and Th2Ni17 structure types by combination of internal deformation and multiple substitution. The triangular 36 and hexagonal 63 nets are alternately stacked with Kagomé 3636 nets. The atoms with the largest radius (La) are enclosed in 18‐vertex polyhedra (distorted pseudo‐Frank–Kasper polyhedra). The coordination polyhedra of the two Mg atoms are bicapped and monocapped hexagonal antiprisms, with coordination numbers of 14 and 13, respectively. For all the Zn atoms, the typical icosahedral coordination is observed. In the direction of the six‐ and threefold axes, strong positional disorder is observed as a result of partial substitutions of La atoms by pairs of Mg atoms.  相似文献   

19.
Zinc sulfide clusters produced by direct laser ablation and analyzed in a time-of-flight mass-spectrometer, showed evidence that clusters composed of 3, 6, and 13 monomer units were ultrastable. The geometry and energies of neutral and positively charged Zn(n)S(n) clusters, up to n = 16, were obtained computationally at the B3LYP/6-311+G level of theory with the assistance of an algorithm to generate all possible structures having predefined constraints. Small neutral and positive clusters were found to have planar geometries, neutral three-dimensional clusters have the geometry of closed-cage polyhedra, and cationic three-dimensional clusters have structures with a pair of two-coordinated atoms. Physical properties of the clusters as a function of size are reported. The relative stability of the positive stoichiometric clusters provides a thermodynamic rationale for the experimental results.  相似文献   

20.
Silicon clusters mixed with a transition metal atom, MSin, were generated by a double-laser vaporization method, and the electronic and geometric stabilities for the resulting clusters with transition metal encapsulated by silicon were examined experimentally. By means of a systematic doping with transition metal atoms of groups 3, 4, and 5 (M = Sc, Y, Lu, Ti, Zr, Hf, V, Nb, and Ta), followed by changes of charge states, we explored the use of an electronic closing of a silicon caged cluster and variations in its cavity size to facilitate metal-atom encapsulation. Results obtained by mass spectrometry, anion photoelectron spectroscopy, and adsorption reactivity toward H2O show that the neutral cluster doped with a group 4 atom features an electronic and a geometric closing at n = 16. The MSi(16) cluster with a group 4 atom undergoes an electronic change in (i) the number of valence electrons when the metal atom is substituted by the neighboring metals with a group 3 or 5 atom and in (ii) atomic radii with the substitution of the same group elements of Zr and Hf. The reactivity of a halogen atom with the MSi(16) clusters reveals that VSi(16)F forms a superatom complex with ionic bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号