首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Precisely engineering the electrical conductivity represents a promising strategy to design efficient catalysts towards oxygen evolution reaction (OER). Here, we demonstrate a versatile partial cation exchange method to fabricate lamellar Ag‐CoSe2 nanobelts with controllable conductivity. The electrical conductivity of the materials was significantly enhanced by the addition of Ag+ cations of less than 1.0 %. Moreover, such a trace amount of Ag induced a negligible loss of active sites which was compensated through the effective generation of active sites as shown by the excellent conductivity. Both the enhanced conductivity and the retained active sites contributed to the remarkable electrocatalytic performance of the Ag‐CoSe2 nanobelts. Relative to the CoSe2 nanobelts, the as‐prepared Ag‐CoSe2 nanobelts exhibited a higher current density and a lower Tafel slope towards OER. This strategy represents a rational design of efficient electrocatalysts through finely tuning their electrical conductivities.  相似文献   

2.
《中国化学会会志》2017,64(5):557-564
Novel Li3V2 (PO4)3 nanobelts, which was confirmed by the peaks of X‐ray diffraction, were prepared by a facile and environmentally friendly electrospinning method. A distinct nanobelt structure, with an average width of 2.5 µm and a thickness of 200 nm, is observed by scanning electron microscopy (SEM), while the specific surface area of 140.8 m2/g is estimated by a specific surface area analyzer. Moreover, the unique Li3V2(PO4)3 nanobelts exhibited a specific discharge capacity of 155.6 mAh/g at 0.2 C rate when they were used as cathode material in lithium‐ion batteries, on testing from 3.0 to 4.8 V. Remarkably, the batteries containing Li3V2(PO4)3 nanobelts displayed excellent cycling performance, with only a 0.02% fading rate per cycle after 50 cycles in the range 30–4.3 V. These outstanding electrochemical performances could be ascribed to the particular morphology, large surface area, homogeneous particle size distribution, and the one‐dimensional microstructure of Li3V2(PO4)3 nanobelts.  相似文献   

3.
A flexible and wearable aqueous lithium‐ion battery is introduced based on spinel Li1.1Mn2O4 cathode and a carbon‐coated NASICON‐type LiTi2(PO4)3 anode (NASICON=sodium‐ion super ionic conductor). Energy densities of 63 Wh kg?1 or 124 mWh cm?3 and power densities of 3 275 W kg?1 or 11.1 W cm?3 can be obtained, which are seven times larger than the largest reported till now. The full cell can keep its capacity without significant loss under different bending states, which shows excellent flexibility. Furthermore, two such flexible cells in series with an operation voltage of 4 V can be compatible with current nonaqueous Li‐ion batteries. Therefore, such a flexible cell can potentially be put into practical applications for wearable electronics. In addition, a self‐chargeable unit is realized by integrating a single flexible aqueous Li‐ion battery with a commercial flexible solar cell, which may facilitate the long‐time outdoor operation of flexible and wearable electronic devices.  相似文献   

4.
Porous V2O5 nanotubes, hierarchical V2O5 nanofibers, and single‐crystalline V2O5 nanobelts were controllably synthesized by using a simple electrospinning technique and subsequent annealing. The mechanism for the formation of these controllable structures was investigated. When tested as the cathode materials in lithium‐ion batteries (LIBs), the as‐formed V2O5 nanostructures exhibited a highly reversible capacity, excellent cycling performance, and good rate capacity. In particular, the porous V2O5 nanotubes provided short distances for Li+‐ion diffusion and large electrode–electrolyte contact areas for high Li+‐ion flux across the interface; Moreover, these nanotubes delivered a high power density of 40.2 kW kg?1 whilst the energy density remained as high as 201 W h kg?1, which, as one of the highest values measured on V2O5‐based cathode materials, could bridge the performance gap between batteries and supercapacitors. Moreover, to the best of our knowledge, this is the first preparation of single‐crystalline V2O5 nanobelts by using electrospinning techniques. Interestingly, the beneficial crystal orientation provided improved cycling stability for lithium intercalation. These results demonstrate that further improvement or optimization of electrochemical performance in transition‐metal‐oxide‐based electrode materials could be realized by the design of 1D nanostructures with unique morphologies.  相似文献   

5.
《化学:亚洲杂志》2017,12(1):36-40
N‐doped mesoporous carbon‐capped MoO2 nanobelts (designated as MoO2@NC) were synthesized and applied to lithium‐ion storage. Owing to the stable core–shell structural framework and conductive mesoporous carbon matrix, the as‐prepared MoO2@NC shows a high specific capacity of around 700 mA h g−1 at a current of 0.5 A g−1, excellent cycling stability up to 100 cycles, and superior rate performance. The N‐doped mesoporous carbon can greatly improve the conductivity and provide uninhibited conducting pathways for fast charge transfer and transport. Moreover, the core–shell structure improved the structural integrity, leading to a high stability during the cycling process. All of these merits make the MoO2@NC to be a suitable and promising material for lithium ion battery.  相似文献   

6.
A simple hydrothermal method has been developed to prepare hexagonal tablet precursors, which are then transformed into porous sodium‐doped Ni2P2O7 hexagonal tablets by a simple calcination method. The obtained samples were evaluated as electrode materials for supercapacitors. Electrochemical measurements show that the electrode based on the porous sodium‐doped Ni2P2O7 hexagonal tablets exhibits a specific capacitance of 557.7 F g?1 at a current density of 1.2 A g?1. Furthermore, the porous sodium‐doped Ni2P2O7 hexagonal tablets were successfully used to construct flexible solid‐state hybrid supercapacitors. The device is highly flexible and achieves a maximum energy density of 23.4 Wh kg?1 and a good cycling stability after 5000 cycles, which confirms that the porous sodium‐doped Ni2P2O7 hexagonal tablets are promising active materials for flexible supercapacitors.  相似文献   

7.
Uniform one‐dimensional V2O5@polyaniline core/shell nanobelts have been fabricated by a simple in‐situ polymerization method in the absence of any surfactant and additional initiator. The influences of pH and additional initiator on the morphology of the resulting products are investigated. The pH value is important for the formation of V2O5@polyaniline core/shell nanobelts, which preserve the original morphology of V2O5 nanobelts. With a decrease in the pH value to 0 the original morphology of the V2O5 nanobelts is destroyed. When ammonium peroxydisulfate is used, some separated polyaniline nanofibers are formed. The formation of the V2O5@polyaniline core/shell nanobelts can be related to the in‐situ polymerization of aniline monomer by etching V2O5 nanobelts. The electrochemical lithium intercalation/deintercalation of V2O5@polyaniline core/shell nanobelts is investigated by cyclic voltammograms.

  相似文献   


8.
In the title compound, {[NiCl2(C19H17N5O2)2]·4C3H7NO}n, the NiII atom is located on an inversion centre and is in a six‐coordinated octahedral geometry, formed by four pyridine N atoms from four N2,N6‐bis[(pyridin‐3‐yl)methyl]pyridine‐2,6‐dicarboxamide (BPDA) ligands occupying the equatorial plane and two chloride anions at the axial sites. The bidentate bridging BPDA ligands link the NiII atoms into a two‐dimensional corrugated grid‐like flexible layer with a (4,4)‐connected topology, which consists of left‐ and right‐handed helical chains sharing the common NiII atoms. Investigation of the thermal stability shows that the network is stable up to 573 K.  相似文献   

9.
The synthesis of nanoporous graphene by a convenient carbon nanofiber assisted self‐assembly approach is reported. Porous structures with large pore volumes, high surface areas, and well‐controlled pore sizes were achieved by employing spherical silica as hard templates with different diameters. Through a general wet‐immersion method, transition‐metal oxide (Fe3O4, Co3O4, NiO) nanocrystals can be easily loaded into nanoporous graphene papers to form three‐dimensional flexible nanoarchitectures. When directly applied as electrodes in lithium‐ion batteries and supercapacitors, the materials exhibited superior electrochemical performances, including an ultra‐high specific capacity, an extended long cycle life, and a high rate capability. In particular, nanoporous Fe3O4–graphene composites can deliver a reversible specific capacity of 1427.5 mAh g?1 at a high current density of 1000 mA g?1 as anode materials in lithium‐ion batteries. Furthermore, nanoporous Co3O4–graphene composites achieved a high supercapacitance of 424.2 F g?1. This work demonstrated that the as‐developed freestanding nanoporous graphene papers could have significant potential for energy storage and conversion applications.  相似文献   

10.
A series of metal–organic frameworks based on a flexible, highly charged Bpybc ligand, namely 1? Mn?OH?, 2? Mn?SO42?, 3? Mn?bdc2?, 4? Eu?SO42? (H2BpybcCl2=1,1′‐bis(4‐carboxybenzyl)‐4,4′‐bipyridinium dichloride, H2bdc=1,4‐benzenedicarboxylic acid) have been obtained by a self‐assembly process. Single‐crystal X‐ray‐diffraction analysis revealed that all of these compounds contained the same n‐fold 2D→3D Borromean‐entangled topology with irregular butterfly‐like pore channels that were parallel to the Borromean sheets. These structures were highly tolerant towards various metal ions (from divalent transition metals to trivalent lanthanide ions) and anion species (from small inorganic anions to bulky organic anions), which demonstrated the superstability of these Borromean linkages. This non‐interpenetrated entanglement represents a new way of increasing the stability of the porous frameworks. The introduction of bipyridinium molecules into the porous frameworks led to the formation of cationic surface, which showed high affinities to methanol and water vapor. The distinct adsorption and desorption isotherms of methanol vapor in four complexes revealed that the accommodated anion species (of different size, shape, and location) provided a unique platform to tune the environment of the pore space. Measurements of the adsorption of various organic vapors onto framework 1? Mn?OH? further revealed that these pores have a high adsorption selectivity towards molecules with different sizes, polarities, or π‐conjugated structures.  相似文献   

11.
In this study, we report a remarkably active CeVO4 nanozyme that functionally mimics cytochrome c oxidase (CcO), the terminal enzyme in the respiratory electron transport chain, by catalyzing a four‐electron reduction of dioxygen to water. The nanozyme catalyzes the reaction by using cytochrome c (Cyt c), the biological electron donor for CcO, at physiologically relevant pH. The CcO activity of the CeVO4 nanozymes depends on the relative ratio of surface Ce3+/Ce4+ ions, the presence of V5+ and the surface‐Cyt c interactions. The complete reduction of oxygen to water takes place without release of any partially reduced oxygen species (PROS) such as superoxide, peroxide and hydroxyl radicals.  相似文献   

12.
Metal–organic frameworks (MOFs) based on multidentate N‐heterocyclic ligands involving imidazole, triazole, tetrazole, benzimidazole, benzotriazole or pyridine present intriguing molecular topologies and have potential applications in ion exchange, magnetism, gas sorption and storage, catalysis, optics and biomedicine. The 2‐[(1H‐1,2,4‐triazol‐1‐yl)methyl]‐1H‐benzimidazole (tmb) ligand has four potential N‐atom donors and can act in monodentate, chelating, bridging and tridentate coordination modes in the construction of complexes, and can also act as both a hydrogen‐bond donor and acceptor. In addition, the tmb ligand can adopt different coordination conformations, resulting in complexes with helical structures due to the presence of the flexible methylene spacer. A new three‐dimensional coordination polymer, poly[[bis(μ2‐benzene‐1,4‐dicarboxylato)‐κ4O1,O1′:O4,O4′2O1:O4‐bis{μ2‐2‐[(1H‐1,2,4‐triazol‐1‐yl)methyl‐κN4]‐1H‐benzimidazole‐κN3}dizinc(II)] trihydrate], {[Zn(C8H4O4)(C10H9N5)]·1.5H2O}n, has been synthesized by the reaction of ZnCl2 with tmb and benzene‐1,4‐dicarboxylic acid (H2bdic) under solvothermal conditions. There are two crystallographically distinct bdic2− ligands [bdic2−(A) and bdic2−(B)] in the structure which adopt different coordination modes. The ZnII ions are bridged by tmb ligands, leading to one‐dimensional helical chains with different handedness, and adjacent helices are linked by bdic2−(A) ligands, forming a two‐dimensional network structure. The two‐dimensional layers are further connected by bdic2−(B) ligands, resulting in a three‐dimensional framework with the topological notation 66. The IR spectra and thermogravimetric curves are consistent with the results of the X‐ray crystal structure analysis and the title polymer exhibits good fluorescence in the solid state at room temperature.  相似文献   

13.
In 3‐methyl­thio‐4‐(propargyl­thio)­quinolinium chloride monohydrate, C13H12NS2+·Cl?·H2O, and 3‐methyl­thio‐4‐(propargyl­thio)­quinolinium tri­chloro­acetate, C13H12­NS2+·­C2Cl3O2?, the terminal alkyne group forms C[triple‐bond]C—H?O hydrogen bonds of favourable geometry. The conformation of the flexible propargyl­thio group is different in the two structures.  相似文献   

14.
The title compound, C10H24N6O4, is the most stable type of nitric oxide (NO) donor among the broad category of discrete N‐diazeniumdiolates (NO adducts of nucleophilic small molecule amines). Sitting astride a crystallographic inversion center, the molecule contains a symmetric dimethylhexane‐1,6‐diamine structure bearing two planar O2‐methylated N‐diazeniumdiolate functional groups [N(O)=NOMe]. These two groups are parallel to each other and have the potential to release four molecules of NO. The methylated diazeniumdiolate substituent removes the negative charge from the typical N(O)=NO group, thereby increasing the stability of the diazeniumdiolate structure. The crystal was nonmerohedrally twinned by a 180° rotation about the real [101] axis. This is the first N‐based bis‐diazeniumdiolate compound with a flexible aliphatic main unit to have its structure analyzed and this work demonstrates the utility of stabilizing the N‐diazeniumdiolate functional group by methylation.  相似文献   

15.
As the properties of ultrathin two‐dimensional (2D) crystals are strongly related to their electronic structures, more and more attempts were carried out to tune their electronic structures to meet the high standards for the construction of next‐generation smart electronics. Herein, for the first time, we show that the conductive nature of layered ternary chalcogenide with formula of Cu2WS4 can be switched from semiconducting to metallic by hydrogen incorporation, accompanied by a high increase in electrical conductivity. In detail, the room‐temperature electrical conductivity of hydrogenated‐Cu2WS4 nanosheet film was almost 1010 times higher than that of pristine bulk sample with a value of about 2.9×104 S m?1, which is among the best values for conductive 2D nanosheets. In addition, the metallicity in the hydrogenated‐Cu2WS4 is robust and can be retained under high‐temperature treatment. The fabricated all‐solid‐state flexible supercapacitor based on the hydrogenated‐Cu2WS4 nanosheet film shows promising electrochemical performances with capacitance of 583.3 F cm?3 at a current density of 0.31 A cm?3. This work not only offers a prototype material for the study of electronic structure regulation in 2D crystals, but also paves the way in searching for highly conductive electrodes.  相似文献   

16.
Three 3‐amino‐1, 2, 4‐triazole (atz)‐based paramagnetic complexes, [Mn(atz)(pa)]n ( 1 ), {[Mn(atz)1.5(hip)] · H2O}n ( 2 ), and [Mn(H2O)2(atz)2(nb)2] ( 3 ) (H2pa = o‐phthalic acid, H2hip = 5‐hydroxylisophthalic acid, and Hnb = p‐nitrobenzoic acid) were prepared by introducing different carboxylate‐containing aromatic coligands, and structurally and magnetically characterized. Helical MnII‐atz and bent MnII‐pa2– chains are crosslinked by sharing the same metal sites to generate a honeycomb‐shaped framework of 1 . The undulated MnII‐atz layers constructed from 22‐member metallomacrocycles are periodically supported by ditopic hip2– ligands to lead to a pillared‐layer structure of 2 . In contrast, complex 3 is a centrosymmetric mononuclear entity, which is assembled into a three‐dimensional supramolecular network by abundant hydrogen‐bonding interactions. The structural difference of 1 – 3 is significantly due to the combinations of the flexible coordination modes adopted by the mixed atz and carboxylate groups. Weak and comparable antiferromagnetic couplings are observed in the nearest neighbors of 1 – 3 , which are cooperatively transmitted either by short carboxylate and/or atz heterobridges or by weak non‐covalent interactions.  相似文献   

17.
Crystals of poly[[aqua[μ3‐4‐carboxy‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐5‐carboxylato‐κ5O1O1′:N3,O4:O5][μ4‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐4‐carboxylato‐κ7N3,O4:O4,O4′:O1,O1′:O1]cadmium(II)] monohydrate], {[Cd2(C15H14N2O4)(C16H14N2O6)(H2O)]·H2O}n or {[Cd2(Hcpimda)(cpima)(H2O)]·H2O}n, (I), were obtained from 1‐(4‐carboxybenzyl)‐2‐propyl‐1H‐imidazole‐4,5‐dicarboxylic acid (H3cpimda) and cadmium(II) chloride under hydrothermal conditions. The structure indicates that in‐situ decarboxylation of H3cpimda occurred during the synthesis process. The asymmetric unit consists of two Cd2+ centres, one 4‐carboxy‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐5‐carboxylate (Hcpimda2−) anion, one 1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐4‐carboxylate (cpima2−) anion, one coordinated water molecule and one lattice water molecule. One Cd2+ centre, i.e. Cd1, is hexacoordinated and displays a slightly distorted octahedral CdN2O4 geometry. The other Cd centre, i.e. Cd2, is coordinated by seven O atoms originating from one Hcpimda2− ligand and three cpima2− ligands. This Cd2+ centre can be described as having a distorted capped octahedral coordination geometry. Two carboxylate groups of the benzoate moieties of two cpima2− ligands bridge between Cd2 centres to generate [Cd2O2] units, which are further linked by two cpima2− ligands to produce one‐dimensional (1D) infinite chains based around large 26‐membered rings. Meanwhile, adjacent Cd1 centres are linked by Hcpimda2− ligands to generate 1D zigzag chains. The two types of chains are linked through a μ2‐η2 bidentate bridging mode from an O atom of an imidazole carboxylate unit of cpima2− to give a two‐dimensional (2D) coordination polymer. The simplified 2D net structure can be described as a 3,6‐coordinated net which has a (43)2(46.66.83) topology. Furthermore, the FT–IR spectroscopic properties, photoluminescence properties, powder X‐ray diffraction (PXRD) pattern and thermogravimetric behaviour of the polymer have been investigated.  相似文献   

18.
The crystal structures of the proton‐transfer compounds of ferron (8‐hydroxy‐7‐iodoquinoline‐5‐sulfonic acid) with 4‐chloroaniline and 4‐bromoaniline, namely 4‐chloroanilinium 8‐hydroxy‐7‐iodoquinoline‐5‐sulfonate monohydrate, C6H7ClN+·C9H5INO4S·H2O, and 4‐bromoanilinium 8‐hydroxy‐7‐iodoquinoline‐5‐sulfonate monohydrate, C6H7BrN+·C9H5INO4S·H2O, have been determined. The compounds are isomorphous and comprise sheets of hydrogen‐bonded cations, anions and water molecules which are extended into a three‐dimensional framework structure through centrosymmetric R22(10) O—H...N hydrogen‐bonded ferron dimer interactions.  相似文献   

19.
The open‐chain polyether‐bridged flexible ligand 1,2‐bis[2‐(1H‐1,3‐imidazol‐1‐ylmethyl)phenoxy]ethane (L) has been used to create two two‐dimensional coordination polymers under hydrothermal reaction of L with CdII or CoII, in the presence of benzene‐1,4‐dicarboxylic acid (H2bdc). In poly[[(μ2‐benzene‐1,4‐dicarboxylato){μ‐1,2‐bis[2‐(1H‐1,3‐imidazol‐1‐ylmethyl)phenoxy]ethane}cadmium(II)] dihydrate], {[Cd(C8H4O4)(C22H22N4O2)]·2H2O}n, (I), and the cobalt(II) analogue {[Co(C8H4O4)(C22H22N4O2)]·2H2O}n, (II), the CdII and CoII cations are six‐coordinated by four carboxylate O atoms from two different bdc2− dianions in a chelating mode and two N atoms from two distinct L ligands. The metal ions, bdc2− dianions and L ligands each sit across crystallographic twofold axes. The bdc2− coordination mode and the coordinating orientation of the L ligand play an important role in constructing the novel two‐dimensional framework. Complexes (I) and (II) are threefold interpenetrated two‐dimensional frameworks; their structures are almost isomorphous, while the bond lengths, angles and hydrogen bonds are different in (I) and (II).  相似文献   

20.
Two new coordination polymers (CPs) formed from 5‐iodobenzene‐1,3‐dicarboxylic acid (H2iip) in the presence of the flexible 1,4‐bis(1H‐imidazol‐1‐yl)butane (bimb) auxiliary ligand, namely poly[[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)butane‐κ2N3:N3′](μ3‐5‐iodobenzene‐1,3‐dicarboxylato‐κ4O1,O1′:O3:O3′)cobalt(II)], [Co(C8H3IO4)(C10H14N4)]n or [Co(iip)(bimb)]n, (1), and poly[[[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)butane‐κ2N3:N3′](μ2‐5‐iodobenzene‐1,3‐dicarboxylato‐κ2O1:O3)zinc(II)] trihydrate], {[Zn(C8H3IO4)(C10H14N4)]·3H2O}n or {[Zn(iip)(bimb)]·3H2O}n, (2), were synthesized and characterized by FT–IR spectroscopy, thermogravimetric analysis (TGA), solid‐state UV–Vis spectroscopy, single‐crystal X‐ray diffraction analysis and powder X‐ray diffraction analysis (PXRD). The iip2− ligand in (1) adopts the (κ11‐μ2)(κ1, κ1‐μ1)‐μ3 coordination mode, linking adjacent secondary building units into a ladder‐like chain. These chains are further connected by the flexible bimb ligand in a transtranstrans conformation. As a result, a twofold three‐dimensional interpenetrating α‐Po network is formed. Complex (2) exhibits a two‐dimensional (4,4) topological network architecture in which the iip2− ligand shows the (κ1)(κ1)‐μ2 coordination mode. The solid‐state UV–Vis spectra of (1) and (2) were investigated, together with the fluorescence properties of (2) in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号