首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A new heteroditopic calix[4]diquinone triazole containing receptor capable of recognising both cations and anions through Lewis base and C? H hydrogen‐bonding modes, respectively, of the triazole motif has been prepared. This ion‐pair receptor cooperatively binds halide/monovalent‐cation combinations in an aqueous mixture, with selectivity trends being established by 1H NMR and UV/Vis spectroscopy. Cation binding by the calix[4]diquinone oxygen and triazole nitrogen donors enhances the strength of the halide complexation at the isophthalamide recognition site of the receptor. Conversely, anions bound in the receptor’s isophthalamide cavity enhance cation recognition. 1H NMR investigations in solution suggest that the receptor’s triazole motifs are capable of coordinating simultaneously to both cation and anion guest species. Solid‐state X‐ray crystallographic structural analysis of a variety of receptor ion‐pair adducts further demonstrates the dual cation–anion binding role of the triazole group.  相似文献   

3.
Prof. Yan Zhao 《Chemphyschem》2013,14(17):3878-3885
The concept of preorganization suggests that organizing a receptor around its guest during binding is detrimental, because the cost of conformational change is assumed to be paid out of the binding energy. Although this concept has historically guided the synthesis of a great many synthetic hosts, in recent years, chemists have begun to synthesize receptors that resemble proteins in their cooperative conformational changes. Such changes could enhance the host–guest interactions, in particular if the binding of the guest triggers previously unengaged noncovalent interactions within the host. These hosts, referred to as cooperatively enhanced receptors, corroborate with their biological counterparts to support the approach of creating high‐affinity receptors through the combined strategies of cooperativity and preorganization. Solvents, often the invisible participants of any solution‐based supramolecular process, should be properly considered in the design of synthetic receptors, whether preorganized or cooperatively enhanced.  相似文献   

4.
5.
Endowing supramolecular gelators with cavities opens up a number of opportunities not possible with other gel systems. The well‐established host–guest chemistry of cavitands can be utilized to build up and break down gel structures, introduce responsive functionalities, or enhance selectivity in applications such as catalysis and extraction. Cavity‐containing gelators provide an excellent case study for how different aspects of supramolecular chemistry can be used intelligently to create responsive materials.  相似文献   

6.
7.
The Huisgen thermal reaction between an organic azide and an acetylene was employed for the selective monofunctionalization of a X6‐azacryptand ligand bearing a tren coordinating unit [X6 stands for calix[6]arene and tren for tris(2‐aminoethyl)amine]. Supramolecular assistance, originating from the formation of a host–guest inclusion complex between the reactants, greatly accelerates the reaction while self‐inhibition affords a remarkable selectivity. The new ligand possesses a single amino‐leg appended at the large rim of the calixarene core and the corresponding Zn2+ complex was characterized both in solution and in the solid state. The coordination of Zn2+ not only involves the tren cap but also the introverted amino‐leg, which locks the metal ion in the cavity. Compared with the parent ligand deprived of the amino‐leg, the affinity of the new monofunctionalized X6tren ligand 6 for Zn2+ is found to have a 10‐fold increase in DMSO, which is a very competitive solvent, and with an enhancement of at least three orders of magnitude in CDCl3/CD3OD (1:1, v/v). In strong contrast with the fast binding kinetics, decoordination of Zn2+ as well as transmetallation appeared to be very slow processes. The monofunctionalized X6tren ligand 6 fully protects the metal ion from the external medium thanks to the combination of a cavity and a closed coordination sphere, leading to greater thermodynamic and kinetic stabilities.  相似文献   

8.
A biomimetic strategy for the monofunctionalization of a calix[6]arene core is described. It is based on host–guest chemistry (mimicking the Michaelis–Menten adduct in enzymes) and allows the finely tuned pre‐organization of the substrate (an alkyne) with respect to the reactant (three azido groups introduced at the calixarene large rim). It is shown that the thermal Huisgen reaction implemented in this work proceeds under very mild conditions with total regioselectivity of the cycloaddition process. The scope of the reaction was explored and the results suggest that such a supramolecular strategy is quite versatile and could be applied to the selective functionalization of other cavitands bearing different recognition patterns. A detailed structural, thermodynamic, and kinetic study is also reported, highlighting interesting biomimetic features: The importance of the host–guest adduct strength, the high sensitivity of the reaction to the pre‐organization of the reactive partners (alkyne vs. azide), and a significant impact of the embedment on the transition state. The self‐coordination of the monofunctionalized products was also studied and an “endo/exo” switch of the internal side‐chain could be triggered by adding competitive ligands.  相似文献   

9.
A ZnII‐funnel complex based on a calix[6]arene ligand decorated with three tris(imidazolyl) arms at one end of the cone and three NH2 substituents at the other end, acts as a multipoint recognition host for polyfunctionalized guests. The selectivity is ensured by coordination to ZnII, CH–π interaction within the calix cone, and H‐bonding at both rims of the cavity. As a result of these multiple interactions, the host can wrap and orient an unsymmetrical triamine guest with a high selectivity. Furthermore, a proton‐monitored switch between the regio‐isomeric adducts allows reversible inversion of the directionality of the system. Thanks to this directional control, the regioselective mono‐carbamoylation of the unsymmetrical triamine guest was successfully achieved on a preparative scale. This case study shows that a funnel‐like receptor can be used as a supramolecular protecting tool allowing a transformation which would be impracticable with conventional covalent chemistry.  相似文献   

10.
11.
We report the synthesis and X‐ray crystal structure of a cucurbituril–triptycene chimeric receptor ( 1 ). Host 1 binds to guests typical of CB[6]–CB[8], but also binds to larger guests such as blue box ( 20 ) and the Fujita square ( 22 ). Intriguingly, the geometries of the 1 ? 20 and 1 ? 22 complexes blur the lines between host and guest in that both components fulfill both roles within each complex. The fluorescence output of 1 is fully quenched by the formation of complexes with pyridinium‐derived guests.  相似文献   

12.
13.
A water‐soluble supramolecular polymer with a high degree of polymerization and viscosity has been constructed based on the strong host–guest interaction between p‐sulfonatocalix[4]arenes (SC4As) and viologen. A homoditopic doubly ethyl‐bridged bis(p‐sulfonatocalix[4]arene) (d‐SC4A) was prepared and its binding behavior towards methyl viologen compared with the singly ethyl‐bridged bis(p‐sulfonatocalix[4]arene) (s‐SC4A) by NMR spectroscopy and isothermal titration calorimetry. By employing a viologen dimer (bisMV4+) as the homoditopic guest, two linear AA/BB‐type supramolecular polymers, d‐SC4A?bisMV4+ and s‐SC4A?bisMV4+, were successfully constructed. Compared with s‐SC4A?bisMV4+, d‐SC4A?bisMV4+ shows much higher solubility and viscosity, and has also been characterized by viscosity, diffusion‐ordered NMR spectroscopy, dynamic light scattering, and atomic force microscopy measurements. Furthermore, the polymer is responsive to electrostimulus as viologen is electroactive, which was studied by cyclic voltammetry. This study represents a proof‐of‐principle as the polymer can potentially be applied as a self‐healing and degradable polymeric material.  相似文献   

14.
15.
Versatile concave receptors with binding properties that can be controlled by external stimuli are rare. Herein, we report on a calix[6]crypturea ( 1 ) that features two different binding sites in close proximity, that is, a tris(2‐aminoethyl)amine (tren)‐based tris‐ureido cap that provides convergent hydrogen‐bond‐donor sites and a hydrophobic cavity suitable for the inclusion of organic guests. The binding properties of this heteroditopic receptor have been evaluated by NMR spectroscopic studies. Compound 1 behaves as a remarkably versatile host that strongly binds neutral molecules, anions, or contact ion pairs. Within each family of guests, compound 1 is able to discriminate between different guests with a high degree of selectivity. Indeed, neutral molecules that possess hydrogen‐bond donor and acceptor groups, chloride anions, and linear ammonium ions associated to F? or Cl? are particularly well recognized. In comparison with all the related receptors, compound 1 displays several unique features: 1) charged or neutral species are also recognized in polar or protic solvents, 2) thanks to the flexibility of the calixarene structure, induced‐fit processes allow the binding of large, biologically relevant ammonium salts such as neurotransmitters, and 3) the protonation of the basic cap leads to a positively charged receptor, 1? H+, which is reluctant to host anions and in which host properties are now governed by strong charge–dipole interactions with the guests. In other words, compound 1 presents an acid–base controllable tris‐ureido recognition site protected by a hydrophobic corridor that can select guests through induced‐fit processes. Thus, its versatile host properties can be allosterically controlled by protonation and selective guest‐switching processes are possible. To illustrate all these remarkable features, a sophisticated three‐pole supramolecular switch, based on the interconversion of host–guest systems displaying either charged or neutral guests, is described.  相似文献   

16.
17.
We have designed anion receptor 4 based on a conformationally labile bispyrrolylbenzene framework, the conformation of which can be changed by appropriate anionic stimuli. In the absence of fluoride anion, the pyrrole moieties rotate freely at room temperature. However, when the concentration of fluoride anion exceeds 2 equivalents, the rotation of the pyrrole units slows down and the conformation of the receptor changes to antianti. DFT calculations have shown that this change is due to binding of a third fluoride anion through C?H interaction. Anion receptor 4 can also serve as a molecular logic gate. Anionic inputs such as fluoride and dihydrogenphosphate allow the realization of INHIBIT and NAND logic gate functions with absorption and fluorescence as readouts, respectively.  相似文献   

18.
19.
Currently, main‐group metal cations are totally neglected as the structure‐building blocks for the self‐assembly of supramolecular coordination metallocages due to the lack of directional bonding. However, here we show that a common Arrhenius acid–base neutralization allows the alkaline‐earth metal cations to act as charged binders, easily connecting two or more highly directional anionic transition‐metal‐based metalloligands to coordination polymers. With a metal salt such as K+PF6? added during the neutralization, the main‐group metal‐connected skeleton can be templated by the largest yet reported ionic‐aggregate anion, K2(PF6)3?, formed from KPF6 in solution, into molecular metallocages, encapsulating the ion. Crystal‐structure details, DFT‐calculation results, and controlled‐release behavior support the presence of K2(PF6)3? as a guest in the cage. Upon removal of PF6? ions, the cage stays intact. Other ions like BF4? can be put back in.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号