首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Easy access to discrete nanoclusters in metal‐folded single‐chain nanoparticles (metal‐SCNPs) and independent ultrafine sudomains in the assemblies via coordination‐driven self‐assembly of hydrophilic copolymer containing 9% imidazole groups is reported herein. 1H NMR, dynamic light scattering, and NMR diffusion‐ordered spectroscopy results demonstrate self‐assembly into metal‐SCNPs (>70% imidazole‐units folded) by neutralization in the presence of Cu(II) in water to pH 4.6. Further neutralization induces self‐assembly of metal‐SCNPs (pH 4.6–5.0) and shrinkage (pH 5.0–5.6), with concurrent restraining residual imidazole motifs and hydrophilic segment, which organized into constant nanoparticles over pH 5.6–7.5. Atomic force microscopy results evidence discrete 1.2 nm nanoclusters and sub‐5‐nm subdomains in metal‐SCNP and assembled nanoparticle. Reduction of metal center using sodium ascorbate induces structural rearrangement to one order lower than the precursor. Enzyme mimic catalysis required media‐tunable discrete ultrafine interiors in metal‐SCNPs and assemblies have hence been achieved.  相似文献   

2.
The self‐assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra‐ to nanofiltration and decrease the pore size of self‐assembled block copolymer membranes to below 5 nm without post‐treatment. It is now reported that the self‐assembly of blends of two chemically interacting copolymers can lead to highly porous membranes with pore diameters as small as 1.5 nm. The membrane containing an ultraporous, 60 nm thin separation layer can fully reject solutes with molecular weights of 600 g mol?1 in aqueous solutions with a water flux that is more than one order of magnitude higher than the permeance of commercial nanofiltration membranes. Simulations of the membrane formation process by dissipative particle dynamics (DPD) were used to explain the dramatic observed pore size reduction combined with an increase in water flux.  相似文献   

3.
To separate small molecules from the solvent with high permeability and selectivity, the membrane process is thought to be highly effective with much lower energy consumption when compared to the traditional thermal‐based separation process. To achieve high solvent permeance, a sub‐10 nm thick polyamide nanofiltration membrane was synthesized through interfacial polymerization of ethidium bromide (EtBr) and trimesoyl chloride (TMC). Thanks to the extremely low solubility of the EtBr monomer in the organic phase, the polymerization process was strictly limited at the interface of the water and hexane, leading to an ultrathin polyamide membrane with a thickness down to sub‐10 nm. When used in nanofiltration, these ultrathin membranes display ultrafast water permeation of 40 liter per square meter per hour per bar (L m?2 h?1 bar?1), and a high Congo red rejection rate of 93 %. This work demonstrates a new route to synthesize ultrathin polyamide membranes by the traditional interfacial polymerization.  相似文献   

4.
The silica‐PI hybrid self‐standing films with ordered mesoporous structure have been prepared by using dibenzoyl‐L ‐tartaric acid (L ‐DBTA) as non‐surfactant template under mild sol–gel route. Polyimide matrix was obtained from polyamic acid (PAA) via thermal imidization process and the template was removed in this process. The PI‐based hybrid film with 20 wt% SiO2 obtained from DBTA presented the ordered mesoporous channels with average pore size of about 2.0 nm and BET surface area of 1167 m2/g. FTIR and SEM studies indicated that the hydrogen bond interaction between the carboxylic groups of DBTA and benzamide bonds of PAA made the PAA possibly participate in the assembly process of the aggregates of the non‐surfactant template molecules. The mechanical, thermal and some physical properties of these hybrid films materials were also characterized. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
A novel sextuple hydrogen‐bonding (HB) self‐assembly molecular duplex bearing red‐emitting perylene diimide (PDI) fluorophores, namely PDIHB , was synthesized, and its molecular structure was confirmed by 1H NMR, 13C NMR, TOF‐MS and 2D NMR. Compared with the small molecular reference compound PDI , PDIHB shows one time enhanced fluorescence efficiency in solid state (4.1% vs. 2.1%). More importantly, the presence of bulky HB oligoamide strands in PDIHB could trigger effective spatial separation between guest and host fluorophores in thin solid film state, hence inefficient energy transfer occurs between the blue‐emitting host 2TPhNIHB and red guest PDIHB in the 2 wt% guest/host blending film. As a result, a solution‐processed organic light‐emitting diode (OLED) with quite simple device structure of ITO/PEDOT:PSS (40 nm)/PVK (40 nm)/ PDIHB (2 wt%): 2TPhNIHB (50 nm)/LiF (0.8 nm)/Al (100 nm) could emit bias‐independent warm‐white electroluminescence with stable Commission Internationale de L'Eclairage coordinates of (0.42, 0.33), and the maximum brightness and current efficiency of this device are 260 cd·m?2 and 0.49 cd·A?1, respectively. All these results indicated that HB self‐assembly supramolecular fluorophores could act as prospective materials for white OLED application.  相似文献   

6.
For the first time the possibility to obtain nanostructures by self‐assembly of chitosan polyampholytic derivative was demonstrated. The self‐assembly of N‐carboxyethylchitosan (CECh) took place only near its isoelectric point (pH 5.0–5.6). Out of the pH range 5.0–5.6, CECh aqueous solutions behaved as real solutions. Dynamic light scattering and atomic force microscopy analyses revealed that spherically shaped or rod/worm‐like nanosized assemblies were formed depending on the polymer molar mass, pH value, and polymer concentration. CECh of two different molar masses was studied in concentrations ranging from 0.01 to 0.1 mg/mL. The structures from CECh of weight‐average molar mass (Mw ) 4.5 × 103 g/mol were spherical regardless the pH and polymer concentration. In contrast, CECh of high molar mass (HMMCECh, Mw = 6.7 × 105 g/mol) formed self‐assemblies with spherical shape only at pH 5.0 and 5.6. At pH 5.2 spherical nanoparticles were obtained only at polymer concentration 0.01 mg/mL. The mean hydrodynamic diameter (Dh) of the obtained nanoparticles was in the range from 30 to 980 nm. On increasing the concentration, aggregation of the nanoparticles appeared, and at HMMCECh concentration 0.1 mg/mL, rod/worm‐like structures were obtained. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6712–6721, 2008  相似文献   

7.
A signal‐enhanced immunosensor has been developed by self‐assembling Au NPs onto a ferrocene‐branched poly(allylamine)/multiwalled carbon nanotubes (PAA‐Fc/MWNTs) modified electrode for the sensitive determination of hepatitis B surface antigen (HBsAg) as a model protein. The formation of PAA‐Fc/MWNTs composite not only effectively avoided the leakage of Fc and retained its electrochemical activity, but also enhanced the conductivity and charge‐transport properties of the composite. Further adsorption of Au NPs into the PAA matrix provided both the interactive sites for the immobilization of hepatitis B surface antibody (HBsAb) and a favorable microenvironment to maintain its activity. Tests performed with this immunosensor showed a specific response to HBsAg in the range of 0.1–350.0 ng mL?1 with a detection limit of 0.03 ng mL?1.  相似文献   

8.
《Electroanalysis》2006,18(3):291-297
Selected from a series of structurally related heteroaromatic thiols, a newly synthesized reagent 2‐amino‐5‐mercapto‐[1,3,4] triazole (MATZ) was used to fabricate self‐assembled monolayers (SAMs) on gold electrode for the first time. The MATZ/Au SAMs was characterized by electrochemical methods and scanning electronic microscopy (SEM). In 0.04 mol/L Britton–Robinson buffer solution (pH 5), the electrochemical behavior of dopamine showed a quasireversible process at the MATZ/Au SAMs with an electrode kinetic constant 0.1049 cm/s. However, the electrochemical reaction of uric acid at the SAMs electrode showed an irreversible oxidation process, the charge‐transfer kinetics of uric acid was promoted by the SAMs. By Osteryoung square‐wave voltammetry (OSWV), the simultaneous determination of dopamine and uric acid can be accomplished with an oxidation peak separation of 0.24 V, the peak current of dopamine and uric acid were linearly to its concentration in the range of 2.5×10?6–5.0×10?4 mol/L for dopamine and 1×10?6–1×10?4 mol/L for uric acid with a detection limit of 8.0×10?7 mol/L for dopamine and 7.0×10?7 mol/L for uric acid. The MATZ/Au SAMs electrode was used to detect the content of uric acid in real urine and serum sample with satisfactory results.  相似文献   

9.
MOGHIMI Ali 《中国化学》2008,26(10):1831-1836
A novel, simple, sensitive and effective method has been developed for preconcentration of thallium on N,N’-bis(3-methylsalicylidene)-ortho-phenylenediamine (MSOPD) adsorbent in a pH range 5.0—10.0, prior to its spectrophotometric determination, based on the oxidation of bromopyrogallol red at λ=520 nm. This method makes it possible to quantitize thallium in a range of 3.6×10-9 to 2.0×10-5 mol/L, with a detection limit (S/N=3) of 1.42×10-9 mol/L. This procedure has been successfully applied to determine the ultra trace levels of thallium in the environmental samples, free from the interference of some diverse ions. The precision, expressed as relative standard deviation of three measurements, is better than 2.9%.  相似文献   

10.
A simple, sensitive and reproducible flotation‐spectrophotometric method for the determination of thorium is reported. The method is based on the ion‐associate formation between thorium, xylenol orange (XO) and cethyltrimethyl ammonium bromide (CTAB) which is floated in the interface of the aqueous phase and n‐hexane by vigorous shaking. By discarding the aqueous solution and n‐hexane, the adsorbed ion‐associate (Th‐XO‐CTAB) on the wall of a separating funnel was dissolved in a small volume of ethanol solvent, and its absorbance was measured at 568 nm. The effects of different parameters such as pH, concentrations of HCl, XO, and CTAB, volume of n‐hexane, and standing and shaking time were studied. The calibration graph was linear in the concentration range of 2–200 ng mL?1 of thorium(r = 0.9994). The limit of detection (LOD) is 1.4 ng mL?1. The relative standard deviations (RSD) at 50 and 175 ng mL?1 of thorium were 2.5% and 1.0% (n = 7), respectively. The method was successfully applied to the determination of thorium in gas mantel samples.  相似文献   

11.
Traditional micelle self‐assembly is driven by the association of hydrophobic segments of amphiphilic molecules forming distinctive core–shell nanostructures in water. Here we report a surprising chaotropic‐anion‐induced micellization of cationic ammonium‐containing block copolymers. The resulting micelle nanoparticle consists of a large number of ion pairs (≈60 000) in each hydrophobic core. Unlike chaotropic anions (e.g. ClO4?), kosmotropic anions (e.g. SO42?) were not able to induce micelle formation. A positive cooperativity was observed during micellization, for which only a three‐fold increase in ClO4? concentration was necessary for micelle formation, similar to our previously reported ultra‐pH‐responsive behavior. This unique ion‐pair‐containing micelle provides a useful model system to study the complex interplay of noncovalent interactions (e.g. electrostatic, van der Waals, and hydrophobic forces) during micelle self‐assembly.  相似文献   

12.
We report the synthesis and analytical application of the first Cu2+‐selective synthetic ion channel based on peptide‐modified gold nanopores. A Cu2+‐binding peptide motif (Gly‐Gly‐His) along with two additional functional thiol derivatives inferring cation‐permselectivity and hydrophobicity was self‐assembled on the surface of gold nanoporous membranes comprising of about 5 nm diameter pores. These membranes were used to construct ion‐selective electrodes (ISEs) with extraordinary Cu2+ selectivities, approaching six orders of magnitude over certain ions. Since all constituents are immobilized to a supporting nanoporous membrane, their leaching, that is a ubiquitous problem of conventional ionophore‐based ISEs was effectively suppressed.  相似文献   

13.
The synthesis of nanoporous graphene by a convenient carbon nanofiber assisted self‐assembly approach is reported. Porous structures with large pore volumes, high surface areas, and well‐controlled pore sizes were achieved by employing spherical silica as hard templates with different diameters. Through a general wet‐immersion method, transition‐metal oxide (Fe3O4, Co3O4, NiO) nanocrystals can be easily loaded into nanoporous graphene papers to form three‐dimensional flexible nanoarchitectures. When directly applied as electrodes in lithium‐ion batteries and supercapacitors, the materials exhibited superior electrochemical performances, including an ultra‐high specific capacity, an extended long cycle life, and a high rate capability. In particular, nanoporous Fe3O4–graphene composites can deliver a reversible specific capacity of 1427.5 mAh g?1 at a high current density of 1000 mA g?1 as anode materials in lithium‐ion batteries. Furthermore, nanoporous Co3O4–graphene composites achieved a high supercapacitance of 424.2 F g?1. This work demonstrated that the as‐developed freestanding nanoporous graphene papers could have significant potential for energy storage and conversion applications.  相似文献   

14.
Programming the synthesis and self‐assembly of molecules is a compelling strategy for the bottom‐up fabrication of ordered materials. To this end, shape‐persistent macrocycles were designed with alternating carbazoles and triazoles to program a one‐pot synthesis and to bind large anions. The macrocycles bind anions that were once considered too weak to be coordinated, such as PF6?, with surprisingly high affinities (β2=1011 M ?2 in 80:20 chloroform/methanol) and positive cooperativity, α=(4 K2/K1)=1200. We also discovered that the macrocycles assemble into ultrathin films of hierarchically ordered tubes on graphite surfaces. The remarkable surface‐templated self‐assembly properties, as was observed by using scanning tunneling microscopy, are attributed to the complementary pairing of alternating triazoles and carbazoles inscribed into both the co‐facial and edge‐sharing seams that exist between shape‐persistent macrocycles. The multilayer assembly is also consistent with the high degree of molecular self‐association observed in solution, with self‐association constants of K=300 000 M ?1 (chloroform/methanol 80:20). Scanning tunneling microscopy data also showed that surface assemblies readily sequester iodide anions from solution, modulating their assembly. This multifunctional macrocycle provides a foundation for materials composed of hierarchically organized and nanotubular self‐assemblies.  相似文献   

15.
The self‐assembly of a novel double hydrophilic block copolymer in water without the application of external triggers is described, namely pullulan‐b‐poly(2‐ethyl‐2‐oxazoline) (Pull‐b‐PEtOx). The biomacromolecules, Pull (8–38 kg mol?1), is modified and conjugated to biocompatible PEtOx (22 kg mol?1) via modular conjugation. Moreover, the molecular weight of the Pull blocks are varied to investigate the effect of molecular weight on the self‐assembly behavior. Spherical particles with sizes between 300 and 500 nm are formed in diluted aqueous solution (0.1–1.0 wt %) as observed via dynamic light scattering and static light scattering. Additionally, cryo scanning electron microscopy and laser scanning confocal microscopy are performed to support the finding from light scattering. The block ratio study shows an optimum ratio of Pull and PEtOx of 0.4/0.6 for self‐assembly in water in the concentration range of 0.1–1.0 wt %. At higher concentrations of 20 wt %, vesicular structures with sizes above 1 µm can be observed via optical microscopy. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3757–3766  相似文献   

16.
Qian Yang  Bin Su  Yafeng Wang  Wanhao Wu 《Electrophoresis》2019,40(16-17):2149-2156
In this work, an efficient electroosmotic pump (EOP) based on the ultrathin silica nanoporous membrane (u‐SNM), which can drive the motion of fluid under the operating voltage as low as 0.2 V, has been fabricated. Thanks to the ultrathin thickness of u‐SNM (~75 nm), the effective electric field strength across u‐SNM could be as high as 8.27 × 105 V m?1 in 0.4 M KCl when 1.0 V of voltage was applied. The maximum normalized electroosmotic flow (EOF) rate was as high as 172.90 mL/min/cm2/V, which was larger than most of other nanoporous membrane based EOPs. In addition to the ultrathin thickness, the high porosity of this membrane (with a pore density of 4 × 1012 cm?2, corresponding to a porosity of 16.7%) also contribute to such a high EOF rate. Moreover, the EOF rate was found to be proportional to both the applied voltage and the electrolyte concentration. Because of small electrokinetic radius of u‐SNM arising from its ultrasmall pore size (ca. 2.3 nm in diameter), the EOF rate increased with increasing the electrolyte concentration and reached the maximum at a concentration of 0.4 M. This dependence was rationalized by the variations of both zeta potential and electrokinetic radius with the electrolyte concentration.  相似文献   

17.
A new modified carbon paste electrode (CPE) based on a recently synthesized ligand [2‐mercapto‐5‐(3‐nitrophenyl)‐1,3,4‐thiadiazole] (MNT), self‐assembled to gold nanoparticles (GNP) as suitable carrier for Cd(II) ion with potentiometric method are described. The proposed electrode exhibits a Nernstian slope of 29.4±1.0 mV per decade for Cd(II) ion over a wide concentration range from 3.1×10?8 to 3.1×10?4 mol L?1. The detection limit of electrode was 2.0×10?8 mol L?1 of cadmium ion. The potentiometric responses of electrode based on MNT is independent of the pH of test solution in the pH range 2.0–4.0. It has quick response with response time of about 6 s. The proposed electrode show fairly good selectivity over some alkali, alkaline earth, transition and heavy metal ions. Finally, the proposed electrode was successfully employed to detect Cd(II) ion in hair and water samples.  相似文献   

18.
The novel hyperbranched poly(methyl acrylate)‐block‐poly(acrylic acid)s (HBPMA‐b‐PAAs) are successfully synthesized via single‐electron transfer‐living radical polymerization (SET‐LRP), followed with hydrolysis reaction. The copolymer solution could spontaneously form unimolecular micelles composed of the hydrophobic core (PMA) and the hydrophilic shell (PAA) in water. Results show that the size of spherical particles increases from 8.18 to 19.18 nm with increased pH from 3.0 to 12.0. Most interestingly, the unique regular quadrangular prisms with the large microstructure (5.70 μm in length, and 0.47 μm in width) are observed by the self‐assembly of unimolecular micelles when pH value is below 2. Such self‐assembly behavior of HBPMA‐b‐PAA in solution is significantly influenced by the pH cycle times and concentration, which show that increased polymer concentration favors aggregate growth.

  相似文献   


19.
A self‐healable gas barrier nanocoating, which is fabricated by alternate deposition of polyethyleneimine (PEI) and polyacrylic acid (PAA) polyelectrolytes, is demonstrated in this study. This multilayer film, with high elastic modulus, high glass transition temperature, and small free volume, has been shown to be a super oxygen gas barrier. An 8‐bilayer PEI/PAA multilayer assembly (≈700 nm thick) exhibits an oxygen transmission rate (OTR) undetectable to commercial instrumentation (<0.005 cc (m−2 d−1 atm−1)). The barrier property of PEI/PAA nanocoating is lost after a moderate amount of stretching due to its rigidity, which is then completely restored after high humidity exposure, therefore achieving a healing efficiency of 100%. The OTR of the multilayer nanocoating remains below the detection limit after ten stretching‐healing cycles, which proves this healing process to be highly robust. The high oxygen barrier and self‐healing behavior of this polymer multilayer nanocoating makes it ideal for packaging (food, electronics, and pharmaceutical) and gas separation applications.

  相似文献   


20.
The functionalization with phosphotriesterase of poly(isoprene‐b‐styrene‐b‐4‐vinylpyridine)‐based nanoporous membranes fabricated by self‐assembly and nonsolvent induced phase separation (SNIPS) is shown to enable dynamically responsive membranes capable of substrate‐specific and localized gating response. Integration of the SNIPS process with macroporous nylon support layers yields mechanically robust textile‐type films with high moisture vapor transport rates that display rapid and local order‐of‐magnitude modulation of permeability. The simplicity of the fabrication process that is compatible with large‐area fabrication along with the versatility and efficacy of enzyme reactivity offers intriguing opportunities for engineered biomimetic materials that are tailored to respond to a complex range of external parameters, providing sensing, protection, and remediation capabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号