首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A facile and sustainable procedure for the synthesis of nitrogen‐doped hierarchical porous carbons with a three‐dimensional interconnected framework (NHPC‐3D) was developed. The strategy, based on a colloidal crystal‐templating method, utilizes nitrogenous dopamine as the precursor due to its unique properties, including self‐polymerization under mild alkaline conditions, coating onto various surfaces, a high carbonization yield, and well‐preserved nitrogen doping after heat treatment. The obtained NHPC‐3D possesses a high surface area of 1056 m2 g?1, a large pore volume of 2.56 cm3 g?1, and a high nitrogen content of 8.2 wt %. The NHPC‐3D is implemented as the electrode material of a supercapacitor and exhibits a specific capacitance as high as 252 F g?1 at a current density of 2 A g?1. The device also shows a high capacitance retention of 75.7 % at a higher current density of 20 A g?1 in aqueous electrolyte due to a sufficient surface area for charge accommodation, reversible pseudocapacitance, and minimized ion‐transport resistance, as a result of the advantageous interconnected hierarchical porous texture. These results showcase NHPC‐3D as a promising candidate for electrode materials in supercapacitors.  相似文献   

2.
A nitrogen‐doped porous carbon monolith was synthesized as a pseudo‐capacitive electrode for use in alkaline supercapacitors. Ammonia‐assisted carbonization was used to dope the surface with nitrogen heteroatoms in a way that replaced carbon atoms but kept the oxygen content constant. Ammonia treatment expanded the micropore size‐distributions and increased the specific surface area from 383 m2 g?1 to 679 m2 g?1. The nitrogen‐containing porous carbon material showed a higher capacitance (246 F g?1) in comparison with the nitrogen‐free one (186 F g?1). Ex situ electrochemical spectroscopy was used to investigate the evolution of the nitrogen‐containing functional groups on the surface of the N‐doped carbon electrodes in a three‐electrode cell. In addition, first‐principles calculations were explored regarding the electronic structures of different nitrogen groups to determine their relative redox potentials. We proposed possible redox reaction pathways based on the calculated redox affinity of different groups and surface analysis, which involved the reversible attachment/detachment of hydroxy groups between pyridone and pyridine. The oxidation of nitrogen atoms in pyridine was also suggested as a possible reaction pathway.  相似文献   

3.
The synthesis of two‐dimensional (2D) polymer nanosheets with a well‐defined microporous structure remains challenging in materials science. Here, a new kind of 2D microporous carbonaceous polymer nanosheets was synthesized through polymerization of a very low concentration of 1,4‐dicyanobenzene in molten zinc chloride at 400–500 °C. This type of nanosheets has a thickness in the range of 3–20 nm, well‐defined microporosity, a high surface area (~537 m2 g?1), and a large micropore volume (~0.45 cm3 g?1). The microporous carbonaceous polymer nanosheets exhibit superior CO2 sorption capability (8.14 wt % at 298 K and 1 bar) and a relatively high CO2 selectivity toward N2 (25.6). Starting from different aromatic nitrile monomers, a variety of 2D carbonaceous polymer nanosheets can be obtained showing a certain universality of the ionothermal method reported herein.  相似文献   

4.
An advanced supercapacitor material based on nitrogen‐doped porous graphitic carbon (NPGC) with high a surface area was synthesized by means of a simple coordination–pyrolysis combination process, in which tetraethyl orthosilicate (TEOS), nickel nitrate, and glucose were adopted as porogent, graphitic catalyst precursor, and carbon source, respectively. In addition, melamine was selected as a nitrogen source owing to its nitrogen‐enriched structure and the strong interaction between the amine groups and the glucose unit. A low‐temperature treatment resulted in the formation of a NPGC precursor by combination of the catalytic precursor, hydrolyzed TEOS, and the melamine–glucose unit. Following pyrolysis and removal of the catalyst and porogent, the NPGC material showed excellent electrical conductivity owing to its high crystallinity, a large Brunauer–Emmett–Teller surface area (SBET=1027 m2 g?1), and a high nitrogen level (7.72 wt %). The unusual microstructure of NPGC materials could provide electrochemical energy storage. The NPGC material, without the need for any conductive additives, showed excellent capacitive behavior (293 F g?1 at 1 A g?1), long‐term cycling stability, and high coulombic efficiency (>99.9 % over 5000 cycles) in KOH when used as an electrode. Notably, in a two‐electrode symmetric supercapacitor, NPGC energy densities as high as 8.1 and 47.5 Wh kg?1, at a high power density (10.5 kW kg?1), were achieved in 6 M KOH and 1 M Et4NBF4‐PC electrolytes, respectively. Thus, the synthesized NPGC material could be a highly promising electrode material for advanced supercapacitors and other conversion devices.  相似文献   

5.
6.
There is significant interest in high‐performance materials that can directly and efficiently capture water vapor, particularly from air. Herein, we report a class of novel porous carbon cuboids with unusual ultra‐hydrophilic properties, over which the synergistic effects between surface heterogeneity and micropore architecture is maximized, leading to the best atmospheric water‐capture performance among porous carbons to date, with a water capacity of up to 9.82 mmol g?1 at P/P0=0.2 and 25 °C (20 % relative humidity or 6000 ppm). Benefiting from properties, such as defined morphology, narrow pore size distribution, and high heterogeneity, this series of functional carbons may serve as model materials for fundamental research on carbon chemistry and the advance of new types of materials for water‐vapor capture as well as other applications requiring combined highly hydrophilic surface chemistry, developed hierarchical porosity, and excellent stability.  相似文献   

7.
8.
Mesoporous carbonaceous materials (Starbons®) derived from low‐value/waste bio‐resources separate CO2 from CO2/N2 mixtures. Compared to Norit activated charcoal (AC), Starbons® have much lower microporosities (8–32 % versus 73 %) yet adsorb up to 65 % more CO2. The presence of interconnected micropores and mesopores is responsible for the enhanced CO2 adsorption. The Starbons® also showed three–four times higher selectivity for CO2 adsorption rather than N2 adsorption compared to AC.  相似文献   

9.
A carbon capture and use (CCU) strategy was applied to organic synthesis. Carbon dioxide (CO2) captured directly from exhaust gas was used for organic transformations as efficiently as hyper‐pure CO2 gas from a commercial source, even for highly air‐ and moisture‐sensitive reactions. The CO2 capturing aqueous ethanolamine solution could be recycled continuously without any diminished reaction efficiency.  相似文献   

10.
The hierarchical porous nitrogen‐doped carbon materials (HNCs) were prepared by using nitrogen containing gelatin as the carbon source and nano‐silica obtained by a simple flame synthesis approach as the template. All of the as‐obtained HNCs show much higher Li storage capacity as compared with commercial graphite. Specifically, HNC‐700 with biggest micropore volume and highest nitrogen content exhibited optimal reversible capacities of 1084 mAh·g??1 at the current density of 37.2 mA·g?1 (0.1 C) and 309 mAh·g?1 even at 3.72 A·g?1 (10 C). This result suggests that HNCs should be a promising candidate for anode materials in high‐rate lithium ion batteries (LIBs).  相似文献   

11.
In this work, the selective electrocatalytic reduction of carbon dioxide to carbon monoxide on oxide‐derived silver electrocatalysts is presented. By a simple synthesis technique, the overall high faradaic efficiency for CO production on the oxide‐derived Ag was shifted by more than 400 mV towards a lower overpotential compared to that of untreated Ag. Notably, the Ag resulting from Ag oxide is capable of electrochemically reducing CO2 to CO with approximately 80 % catalytic selectivity at a moderate overpotential of 0.49 V, which is much higher than that (ca. 4 %) of untreated Ag under identical conditions. Electrokinetic studies show that the improved catalytic activity is ascribed to the enhanced stabilization of COOH. intermediate. Furthermore, highly nanostructured Ag is likely able to create a high local pH near the catalyst surface, which may also facilitate the catalytic activity for the reduction of CO2 with suppressed H2 evolution.  相似文献   

12.
Single‐atom catalysts (SACs) show great promise for electrochemical CO2 reduction reaction (CRR), but the low density of active sites and the poor electrical conduction and mass transport of the single‐atom electrode greatly limit their performance. Herein, we prepared a nickel single‐atom electrode consisting of isolated, high‐density and low‐valent nickel(I) sites anchored on a self‐standing N‐doped carbon nanotube array with nickel–copper alloy encapsulation on a carbon‐fiber paper. The combination of single‐atom nickel(I) sites and self‐standing array structure gives rise to an excellent electrocatalytic CO2 reduction performance. The introduction of copper tunes the d‐band electron configuration and enhances the adsorption of hydrogen, which impedes the hydrogen evolution reaction. The single‐nickel‐atom electrode exhibits a specific current density of ?32.87 mA cm?2 and turnover frequency of 1962 h?1 at a mild overpotential of 620 mV for CO formation with 97 % Faradic efficiency.  相似文献   

13.
To address the issue of global warming and climate change issues, recent research efforts have highlighted opportunities for capturing and electrochemically converting carbon dioxide (CO2). Despite metal doped polymers receiving widespread attention in this respect, the structures hitherto reported lack in ease of synthesis with scale up feasibility. In this study, a series of mesoporous metal-doped polymers (MRFs) with tunable metal functionality and hierarchical porosity were successfully synthesized using a one-step copolymerization of resorcinol and formaldehyde with Polyethyleneimine (PEI) under solvothermal conditions. The effect of PEI and metal doping concentrations were observed on physical properties and adsorption results. The results confirmed the role of PEI on the mesoporosity of the polymer networks and high surface area in addition to enhanced CO2 capture capacity. The resulting Cobalt doped material shows excellent thermal stability and promising CO2 capture performance, with equilibrium adsorption of 2.3 mmol CO2/g at 0 °C and 1 bar for at a surface area 675.62 m2/g. This mesoporous polymer, with its ease of synthesis is a promising candidate for promising for CO2 capture and possible subsequent electrochemical conversion.  相似文献   

14.
《化学:亚洲杂志》2017,12(21):2863-2872
A new strategy involving the computer‐assisted design of substituted imidazolate‐based ionic liquids (ILs) through tuning the absorption enthalpy as well as the basicity of the ILs to improve SO2 capture, CO2 capture, and SO2/CO2 selectivity was explored. The best substituted imidazolate‐based ILs as absorbents for different applications were first predicted. During absorption, high SO2 capacities up to ≈5.3 and 2.4 mol molIL−1 could be achieved by ILs with the methylimidazolate anions under 1.0 and 0.1 bar (1 bar=0.1 MPa), respectively, through tuning multiple N ⋅⋅⋅ S interactions between SO2 and the N atoms in the imidazolate anion with different substituents. In addition, CO2 capture by the imidazolate‐based ILs could also be easily tuned through changing the substituents of the ILs, and 4‐bromoimidazolate IL showed a high CO2 capacity but a low absorption enthalpy. Furthermore, a high selectivity for SO2/CO2 could be reached by IL with 4,5‐dicyanoimidazolate anion owing to its high SO2 capacity but low CO2 capacity. The results put forward in this work are in good agreement with the predictions. Quantum‐chemical calculations and FTIR and NMR spectroscopy analysis methods were used to discuss the SO2 and CO2 absorption mechanisms.  相似文献   

15.
16.
Herein, an approach is reported to prepare porous a carbon/Ge (C/Ge) hybrid. In this hybrid, Ge nanoparticles are closely embedded in a highly conductive and flexible carbon matrix. Such a hybrid features a high surface area (128.0 m2 g?1) and a hierarchical micropore–mesopore structure. When used as an anode material in lithium‐ion batteries (LIBs), the as‐prepared hybrid [C/Ge (60.37 %)] exhibits an improved lithium storage performance with regard to its capacity and rate capability compared to its counterparts. More specifically, it can maintain a specific capacity as high as 906 mAh g?1 at a high current density of 0.6 A g?1 after 50 cycles. The excellent lithium storage performance of the C/Ge (60.37 %) sample can be attributed to synergetic effects between the carbon matrix and Ge nanoparticles. The method we adopted is simple and effective, and can be extended to fabricate other nanomaterials.  相似文献   

17.
Despite the high theoretical capacity of lithium–sulfur batteries, their practical applications are severely hindered by a fast capacity decay, stemming from the dissolution and diffusion of lithium polysulfides in the electrolyte. A novel functional carbon composite (carbon‐nanotube‐interpenetrated mesoporous nitrogen‐doped carbon spheres, MNCS/CNT), which can strongly adsorb lithium polysulfides, is now reported to act as a sulfur host. The nitrogen functional groups of this composite enable the effective trapping of lithium polysulfides on electroactive sites within the cathode, leading to a much improved electrochemical performance (1200 mAh g?1 after 200 cycles). The enhancement in adsorption can be attributed to the chemical bonding of lithium ions by nitrogen functional groups in the MNCS/CNT framework. Furthermore, the micrometer‐sized spherical structure of the material yields a high areal capacity (ca. 6 mAh cm?2) with a high sulfur loading of approximately 5 mg cm?2, which is ideal for practical applications of the lithium–sulfur batteries.  相似文献   

18.
19.
Porous carbon with high specific surface area (SSA), a reasonable pore size distribution, and modified surface chemistry is highly desirable for application in energy storage devices. Herein, we report the synthesis of nitrogen‐containing mesoporous carbon with high SSA (1390 m2 g?1), a suitable pore size distribution (1.5–8.1 nm), and a nitrogen content of 4.7 wt % through a facile one‐step self‐assembly process. Owing to its unique physical characteristics and nitrogen doping, this material demonstrates great promise for application in both supercapacitors and encapsulating sulfur as a superior cathode material for lithium–sulfur batteries. When deployed as a supercapacitor electrode, it exhibited a high specific capacitance of 238.4 F g?1 at 1 A g?1 and an excellent rate capability (180 F g?1, 10 A g?1). Furthermore, when an NMC/S electrode was evaluated as the cathode material for lithium–sulfur batteries, it showed a high initial discharge capacity of 1143.6 mA h g?1 at 837.5 mA g?1 and an extraordinary cycling stability with 70.3 % capacity retention after 100 cycles.  相似文献   

20.
Desiccant driven dehumidification for maintaining the proper humidity levels and atmospheric water capture with minimum energy penalty are important aspects in heat pumps, refrigeration, gas and liquid purifications, gas sensing, and clean water production for improved human health and comfort. Water adsorption by using nanoporous materials has emerged as a viable alternative to energy-intensive industrial processes, thus understanding the significance of their porosity, high surface areas, vast pore volumes, chemical and structural features relative to the water adsorption is quite important. In this review article, important features of nanoporous materials are presented, including zeolites, porous carbons, as well as crystalline and amorphous porous organic polymers (POPs) to define the interactions between the water molecules and the polar/non-polar functional groups on the surface of these nanoporous materials. In particular, focus is placed on the recent developments in POPs in the context of water capture as a result of their remarkable stability towards water and wide range of available synthetic routes and building blocks for their synthesis. We also highlighted recent approaches to increase the water sorption capacity of POPs by modifying their structure, morphology, porosity, and chemical functionality while emphasizing their promising future in this emerging area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号