首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycosylation is one of the most important reactions in nature as it results in the formation of glycoconjugates with diverse biological functions. Sugar nucleotides serve as the natural donor molecules for the biosynthesis of such glycoconjugates and other carbohydrates. Furthermore, these donor molecules are also indispensable building blocks for the enzymatic synthesis of carbohydrates in vitro using Leloir-type glycosyltransferases. Given such importance, the biosynthetic pathways of sugar nucleotides have been exploited, enabling the development of both chemical and enzymatic approaches to produce these molecules. A survey of recent progress in enzymatic synthesis of common mammalian sugar nucleotides as well as their derivatives is thus presented. As a popular strategy, conjugation of sugar nucleotide synthesis with glycosyltransfer reactions and in vivo production of sugar nucleotides are also included.  相似文献   

2.
Active but unselective : Nucleoside triphosphates possessing glucose moieties (such as those depicted) instead of the natural furanose rings are recognised by the active sites of polymerases. Polymerases therefore seem to be very unspecific in their recognition patterns.

  相似文献   


3.
A new strategy is reported for the production of luminescence signals from DNA synthesis through the use of chimeric nucleoside tetraphosphate dimers in which ATP, rather than pyrophosphate, is the leaving group. ATP‐releasing nucleotides (ARNs) were synthesized as derivatives of the four canonical nucleotides. All four derivatives are good substrates for DNA polymerase, with Km values averaging 13‐fold higher than those of natural dNTPs, and kcat values within 1.5‐fold of those of native nucleotides. Importantly, ARNs were found to yield very little background signal with luciferase. DNA synthesis experiments show that the ATP byproduct can be harnessed to elicit a chemiluminescence signal in the presence of luciferase. When using a polymerase together with the chimeric nucleotides, target DNAs/RNAs trigger the release of stoichiometrically large quantities of ATP, thereby allowing sensitive isothermal luminescence detection of nucleic acids as diverse as phage DNAs and short miRNAs.  相似文献   

4.
5‐(5‐Formylthienyl)‐, 5‐(4‐formylphenyl)‐ and 5‐(2‐fluoro‐5‐formylphenyl)cytosine 2′‐deoxyribonucleoside mono‐ ( dCRMP ) and triphosphates ( dCRTP ) were prepared by aqueous Suzuki–Miyaura cross‐coupling of 5‐iodocytosine nucleotides with the corresponding formylarylboronic acids. The dCRTP s were excellent substrates for DNA polymerases and were incorporated into DNA by primer extension or PCR. Reductive aminations of the model dCRMP s with lysine or lysine‐containing tripeptide were studied and optimized. In aqueous phosphate buffer (pH 6.7) the yields of the reductive aminations with tripeptide III were up to 25 %. Bioconjugation of an aldehyde‐containing DNA with a lysine‐containing tripeptide was achieved through reductive amination in yields of up to 90 % in aqueous phosphate buffer.  相似文献   

5.
To create bioorganic hybrid materials, interdisciplinary work in the fields of chemistry, biology and materials science is conducted. DNA block copolymers are promising hybrid materials due to the combination of properties intrinsic to both the polymer and the nucleic acid blocks. Until now, the coupling of DNA and organic polymers has been exercised post‐synthetically in solution or on solid support. Herein, we report the first enzyme‐catalysed synthesis of DNA–organic polymer chimeras. For this purpose, four novel 2′‐deoxyuridine triphosphates carrying polymer‐like moieties linked to the nucleobase were synthesised. Linear polyethylene glycol monomethyl ethers of different sizes ( 1 ) and branched polyamido dendrons with varying terminal groups ( 2 ) were chosen as building blocks. We investigated the ability of DNA polymerases to accept the copolymers in comparison to the natural substrate and showed, through primer extensions, polymerase chain reactions and rolling circle amplification, that these building blocks could serve as a surrogate for the natural thymidine. By this method, DNA hybrid materials with high molecular weight, modification density, and defined structure are accessible.  相似文献   

6.
7.
8.
Glyoxal-linked 2’-deoxyuridine 5’-O-mono- and triphosphates were synthesized through a CuAAC click reaction of 4-azidophenylglyoxal or a Sonogashira reaction of 4-bromophenylglyoxal with 5-ethynyl-dUMP or -dUTP. The triphosphates were used as substrates for enzymatic synthesis of modified DNA probes with KOD XL DNA polymerase. The glyoxal-linked nucleotides reacted with arginine-containing peptides to form stable imizadolone-linked conjugates. This reactive glyoxal modification in DNA was used for efficient bioconjugations and crosslinking with Arg-containing peptides or proteins (e. g., histones) and was found to be more reactive than previously reported 1,3-diketone-linked DNA probes.  相似文献   

9.
In recent years, amphiphilic block copolymers consisting of hydrophilic and hydrophobic segments have attracted much attention, because of their unique phase behavior in aqueous media and potential applications as drug delivery systems1. Poly(ethylene gly…  相似文献   

10.
三嵌段共聚物PAN-b-PEG-b-PAN的合成及其自组装行为的研究   总被引:3,自引:0,他引:3  
雷忠利  刘亚兰 《化学学报》2006,64(24):2403-2408
利用原子转移自由基聚合(ATRP)制得了分子量可控、分子量分布窄的聚丙烯腈-b-聚乙二醇-b-聚丙烯腈P(AN-b-PEG-b-PAN)嵌段共聚物. 通过1H NMR, FTIR, 凝胶渗透色谱(GPC)对所得产物的结构和分子量进行了表征并通过TG和DTA考察了该嵌段共聚物的热稳定性; 运用透射电子显微镜(TEM)、荧光探针技术和动态光散射(DLS)研究了P(AN)27-b-P(EG)45-b-P(AN)27在溶剂水中胶束的形成、结构、形貌和胶束粒径. 结果表明, 三嵌段共聚物P(AN)27-b-P(EG)45-b-P(AN)27的热稳定性较纯聚乙二醇P(EG)好, 且柔性链PEG的引入对嵌段共聚物的放热峰位置没有显著的影响. 当改变此嵌段共聚物溶液浓度时, 该嵌段共聚物会自组装成不同形状的胶束, DLS测量的胶束粒径大于TEM观察的结果, 其临界胶束浓度(cmc)约为4.46×10-4 g•L-1.  相似文献   

11.
用酶促聚合和原子转移自由基聚合相结合的"一锅法"合成了聚甲基丙烯酸正丁酯嵌段聚10-羟基癸酸[PBMA-b-P(10-HD)],通过核磁共振(1H NMR)、傅里叶红外光谱(FTIR)和凝胶渗透色谱(GPC)对其结构以及分子量与其分子量分布进行了表征,并通过动态光散射仪(DLS)和原子力显微镜(AFM)对聚合物在水溶液中的性质进行了研究.所得嵌段聚合物纳米粒子呈球形结构,平均直径为135 nm左右.  相似文献   

12.
An interesting order-order transition between two different complex nanostructures was observed in a new liquid crystalline linear coil-coil-rod ABC triblock copolymer(tri BCP). First, the ABC tri BCP, poly(dimethylsiloxane)-bpolystyrene-b-poly{2,5-bis[(4-methoxyphenyl)oxycarbonyl]styrene}(PDMS-b-PS-b-PMPCS), was synthesized through sequential atom transfer radical polymerization. The degrees of polymerization of PDMS, PS, and PMPCS blocks are 58, 159, and 106, and the corresponding volume fractions of PDMS, PS, and PMPCS are 0.09, 0.29, and 0.62, respectively. The phase behaviors of the PDMS-b-PS diblock copolymer precursor and the final triblock copolymer were studied by smallangle X-ray scattering, one-dimensional wide-angle X-ray scattering, and transmission electron microscopy experiments. The PDMS-b-PS precursor self-assembles into hexagonally packed cylinders with a relatively small periodic size after thermal annealing. When the triblock copolymer is annealed at a relatively low temperature(120 ○C) at which the PMPCS block is in the amorphous state, the tri BCP forms core-shell hexagonally packed cylinders(CSH) with a relativly large periodic size. After the tri BCP is annealed above 140 ○C at which the PMPCS block transforms to the liquid crystalline(LC) phase, the nanophase-separated structure transforms to a three-phase four-layer lamellar structure(LAM-3P4L). Thus, accompanied with the transition of the PMPCS blocks from the amorphous state to the LC phase, the order-order transition from CSH to LAM-3P4 L occurs in the PDMS-b-PS-b-PMPCS ABC tri BCP.  相似文献   

13.
分别以5-碘-2'-脱氧尿苷、 5-碘-2'-脱氧胞苷、 7-去氮-7-碘-2'-脱氧腺苷及7-去氮-7-碘-2'-脱氧鸟苷为原料, 以二硫键为可裂解连接单元, 通过多步反应合成了四色荧光标记不同碱基的脱氧核糖核苷酸; 研究了该类荧光标记核苷酸作为可逆终端在DNA合成测序中的应用. 所得产物结构经1H NMR, 31P NMR及HRMS表征, 并对其进行了DNA高通量测序的测试. 结果表明, 该类荧光标记核苷酸作为DNA合成测序的可逆终端能够满足高通量测序的生化反应要求, 具有较好的应用前景.  相似文献   

14.
我们用端基官能化方法实现两种聚合反应的结合, 成功地制备了AB型双嵌段共聚物PCL-b-PSt和BAB型三嵌段共聚物PSt-b-PCL-b-PSt. 本文利用上述方法, 将酶促开环聚合和原子转移自由基聚合有机地结合起来, 合成了AB型嵌段共聚物-聚己内酯/聚甲基丙烯酸环氧丙酯(PCL-b-PGMA. 此嵌段共聚物具有良好的生物相容性, 在现代生物领域具有广泛的应用前景.  相似文献   

15.
氨基酸类高分子药物合成方法的研究   总被引:5,自引:0,他引:5  
用无机强酸催化酯化反应,合成了聚乙烯醇(PVA)与甘氨酸、丙氨酸的聚合物。对反应条件进行了考察,获得了具有高转化率、高纯度的最佳工艺条件。结果表明:以DMSO为溶剂,PVA浓度在3%以下,pH为3—5,温度控制在120℃一130℃,反应10h一16h后,甘氨酸转化率达44.1%,丙氨酸转化率达33.9%。  相似文献   

16.
17.
潘高翔  冯泽  韦嘉  俞燕蕾 《化学学报》2013,71(5):733-738
以双官能团聚乙二醇(Br-PEO-Br)为引发剂, 利用原子转移自由基聚合(ATRP)制得了含偶氮苯(AZO)和N-异丙基丙烯酰胺(NIPAM)的两亲性三嵌段共聚物P(AZO9-co-NIPAM9)-b-PEO48-b-P(AZO9-co-NIPAM9), 并通过核磁共振(1H NMR)和凝胶渗透色谱(GPC)对产物进行了表征. 该共聚物能够在溶液中自组装形成纳米胶束, 运用透射电子显微镜(TEM)、荧光探针技术和动态光散射(DLS)研究了胶束的形貌、粒径及其在光或温度刺激下的响应行为. 结果表明, 该三嵌段共聚物胶束显现出我们以往报道的二嵌段共聚物所不具有的光释放行为: 包覆有尼罗红的胶束在多次紫外-可见光循环照射之后, 荧光强度和初始状态相比下降了大约40%, 说明尼罗红在此过程中逐渐被释放. 胶束的尺寸随着温度的升高而逐渐缩小.  相似文献   

18.
Summary: A novel ABC triblock copolymer with a rigid‐rod block was synthesized by atom transfer radical polymerization (ATRP). First, a poly(ethylene oxide) (PEO)‐Br macroinitiator was synthesized by esterification of PEO with 2‐bromoisobutyryl bromide, which was subsequently used in the preparation of a poly(ethylene oxide)‐block‐poly(methyl methacrylate) (PEO‐b‐PMMA) diblock copolymer by ATRP. A poly(ethylene oxide)‐block‐poly(methyl methacrylate)‐block‐poly{2,5‐bis[(4‐methoxyphenyl)oxycarbonyl]styrene} (PEO‐b‐PMMA‐b‐PMPCS) triblock copolymer was then synthesized by ATRP using PEO‐b‐PMMA as a macroinitiator.

ABC triblock copolymer with a rigid‐rod block.  相似文献   


19.
Chitin is one of the most abundant and cheaply available biopolymers in Nature. Chitin has become a valuable starting material for many biotechnological products through manipulation of its N‐acetyl functionality, which can be cleaved under mild conditions using the enzyme family of de‐N‐acetylases. However, the chemoselective enzymatic re‐acylation of glucosamine derivatives, which can introduce new stable functionalities into chitin derivatives, is much less explored. Herein we describe an acylase (CmCDA from Cyclobacterium marinum) that catalyzes the N‐acylation of glycosamine with a range of carboxylic acids under physiological reaction conditions. This biocatalyst closes an important gap in allowing the conversion of chitin into complex glycosides, such as C5‐modified sialosides, through the use of highly selective enzyme cascades.  相似文献   

20.
Many potent antibiotics fail to treat bacterial infections due to emergence of drug-resistant strains. This surge of antimicrobial resistance (AMR) calls in for the development of alternative strategies and methods for the development of drugs with restored bactericidal activities. In this context, we surmised that identifying aptamers using nucleotides connected to antibiotics will lead to chemically modified aptameric species capable of restoring the original binding activity of the drugs and hence produce active antibiotic species that could be used to combat AMR. Here, we report the synthesis of a modified nucleoside triphosphate equipped with a vancomycin moiety on the nucleobase. We demonstrate that this nucleotide analogue is suitable for polymerase-mediated synthesis of modified DNA and, importantly, highlight its compatibility with the SELEX methodology. These results pave the way for bacterial-SELEX for the identification of vancomycin-modified aptamers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号