首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2‐Methyl‐3H‐indoles 1 cyclize with two equivalents of ethyl malonate 2 to form 4‐hydroxy‐11H‐benzo[b]pyrano[3,2‐f]indolizin‐2,5‐diones 3, whereas 2‐mefhyl‐2,3‐dihydro‐1H‐indoles 9 give under similar conditions regioisomer 8‐hydroxy‐5‐methyl‐4,5‐dihydro‐pyrrolo[3,2,1‐ij]pyrano[3,2‐c]quinolin‐7,10‐diones 10 . The pyrone rings of 3 and 9 can be cleaved either by alkaline hydrolysis to give 7‐acetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 4 or 5‐acetyl‐6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo‐[3,2,1‐ij]quinolin‐4‐ones 11 , respectively. Chlorination of 3 and 9 with sulfurylchloride gives under subsequent ring opening 7‐dichloroacetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 5 or 5‐dichloracetyl‐6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 12 . The dichloroacetyl group of 5 can be reduced with zinc to 7‐acetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 7. Treatment of the acetyl compounds 4, 7 and 11 with 90% sulfuric acid cleaves the acetyl group and yields 8‐hydroxy‐10H‐pyrido[1,2‐a]‐indol‐6‐ones 6 and 8 , and 6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 13 . Reaction of dichloroacetyl compounds 12 with sodium azide yields 6‐hydroxy‐2‐methyl‐5‐(1H‐tetrazol‐5‐ylcarbonyl)‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 14 via intermediate geminal diazides.  相似文献   

2.
This paper describes a convenient and efficient synthesis of new fused tricyclic diazepino[3,2,1‐ij]quinolines and substituted pyrido[1,2,3‐de]quinoxalines. o‐Phenylenediamines are transformed in the tricycle nucleus in only a few‐step synthetic sequence to produce ethyl 2,8‐dioxo‐1,2,3,4‐tetrahydro‐8H [1,4]diazepino[3,2,1‐ij]quinoline‐7‐carboxylate, ethyl 8‐oxo‐1,2,3,4‐tetrahydro‐8H‐[1,4]diazepino[3,2,1‐ij]quinoline‐7‐carboxylate and ethyl 2,7‐dioxo‐2,3‐dihydro‐1H,7H‐pyrido[1,2,3‐de]quinoxaline‐6‐carboxylate. The method is economical and simple to perform.  相似文献   

3.
The 2,3‐dihydro‐7‐methyl‐1H,5H‐pyrido[3,2,1‐ij]quinoline‐1,5‐dione derivatives 9 and 10 were prepared from 3‐(5,7‐dimethoxy‐4‐methyl‐2‐oxo‐2H‐quinolin‐1‐yl)propionitrile ( 6 ). Cyclodehydration of the amide 8 gave 1,2‐dihydro‐7,9‐dimethoxy‐6‐methylpyimido[1,2‐a]quinolin‐3‐one ( 11 ).  相似文献   

4.
A versatile synthetic method has been developed for the formation of variously substituted polycyclic pyrimidoazepine derivatives, formed by nucleophilic substitution reactions on the corresponding chloro‐substituted compounds; the reactions can be promoted either by conventional heating in basic solutions or by microwave heating in solvent‐free systems. Thus, (6RS)‐6,11‐dimethyl‐3,5,6,11‐tetrahydro‐4H‐benzo[b]pyrimido[5,4‐f]azepin‐4‐one, C14H15N3O, (I), was isolated from a solution containing (6RS)‐4‐chloro‐8‐hydroxy‐6,11‐dimethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine and benzene‐1,2‐diamine; (6RS)‐4‐butoxy‐6,11‐dimethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepin‐8‐ol, C18H23N3O2, (II), was formed by reaction of the corresponding 6‐chloro compound with butanol, and (RS)‐4‐dimethylamino‐6,11‐dimethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepin‐8‐ol, C16H20N4O, (III), was formed by reaction of the chloro analogue with alkaline dimethylformamide. (6RS)‐N‐Benzyl‐8‐methoxy‐6,11‐dimethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepin‐4‐amine, C22H24N4O, (IV), (6RS)‐N‐benzyl‐6‐methyl‐1,2,6,7‐tetrahydropyrimido[5′,4′:6,7]azepino[3,2,1‐hi]indol‐8‐amine, C22H22N4, (V), and (7RS)‐N‐benzyl‐7‐methyl‐2,3,7,8‐tetrahydro‐1H‐pyrimido[5′,4′:6,7]azepino[3,2,1‐ij]quinolin‐9‐amine, C23H24N4, (VI), were all formed by reaction of the corresponding chloro compounds with benzylamine under microwave irradiation. In each of compounds (I)–(IV) and (VI), the azepine ring adopts a conformation close to the boat form, with the C‐methyl group in a quasi‐equatorial site, whereas the corresponding ring in (V) adopts a conformation intermediate between the twist‐boat and twist‐chair forms, with the C‐methyl group in a quasi‐axial site. No two of the structures of (I)–(VI) exhibit the same range of intermolecular hydrogen bonds: different types of sheet are formed in each of (I), (II), (V) and (VI), and different types of chain in each of (III) and (IV).  相似文献   

5.
The oxidative coupling of primary amines with internal alkynes catalyzed by Ru complexes is presented as a general atom‐economy methodology with a broad scope of applications in the synthesis of N‐heterocycles. Reactions proceed through regioselective C?H bond activation in 15 minutes under microwave irradiation or in 24 hours with conventional heating. The synthesis of 2,3,5‐substituted pyridines, benzo[h]isoquinolines, benzo[g]isoquinolines, 8,9‐dihydro‐benzo[de]quinoline, 5,6,7,8‐tetrahydroisoquinolines, pyrido[3,4g]isoquinolines, and pyrido[4,3g]isoquinolines is achievable depending on the starting primary amine used. DFT calculations on a benzylamine substrate support a reaction mechanism that consists of acetate‐assisted C?H bond activation, migratory‐insertion, and C?N bond formation steps that involve 28–30 kcal mol?1. The computational study is extended to additional substrates, namely, 1‐naphthylmethyl‐, 2‐methylallyl‐, and 2‐thiophenemethylamines.  相似文献   

6.
We make the case for benzo[c]quinolin‐6‐ylidene ( 1 ) as a strongly electron‐donating carbene ligand. The facile synthesis of 6‐trifluoromethanesulfonylbenzo[c]quinolizinium trifluoromethanesulfonate ( 2 ) gives straightforward access to a useful precursor for oxidative addition to low‐valent metals, to yield the desired carbene complexes. This concept has been achieved in the case of [Mn(benzo[c]quinolin‐6‐ylidene)(CO)5]+ ( 15 ) and [Pd(benzo[c]quinolin‐6‐ylidene)(PPh3)2(L)]2+ L=THF ( 21 ), OTf ( 22 ) or pyridine ( 23 ). Attempts to coordinate to nickel result in coupling products from two carbene precursor fragments. The CO IR‐stretching‐frequency data for the manganese compound suggests benzo[c]quinolin‐6‐ylidene is at least as strong a donor as any heteroatom‐stabilised carbene ligand reported.  相似文献   

7.
Chemical examination of the BuOH extract of the leaves and twigs of Litsea glutinosa collected from Xishuangbanna resulted in the isolation of two new aporphine alkaloids, namely litseglutine A ( 1 ) and B ( 2 ), along with two known aporphine alkaloids, boldine ( 3 ) and laurolitsine ( 4 ). The structures of the new alkaloids have been elucidated on the basis of spectra analysis as 6‐demethyl‐9‐methoxy‐1,2‐(methylenedioxy)aporphin‐10‐ol (=6,7,7a,8‐tetrahydro‐10‐methoxy‐5H‐benzo[g]‐1,3‐benzodioxolo[6,5,4‐de]quinolin‐11‐ol; 1 ) and 1,10,11‐trimethoxyaporphin‐2‐ol (=5,6,6a,7‐tetrahydro‐1,10,11‐trimethoxy‐6‐methyl‐4H‐dibenzo[de,g]quinolin‐2‐ol; 2 ).  相似文献   

8.
The tricyclic isatin, 5,6‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinoline‐1,2‐dione, undergoes three‐component, one‐pot reactions with 1‐aryl‐3‐methylpyrazole‐5‐amines and cyclohexane‐1,3‐diones producing hexacyclic spiro products, hexahydrospiro[pyrazolo[3,4‐b]quinoline‐4,1‐pyrrolo[3,2,1‐ij]quinoline‐2′,5(1H,4′H)‐diones]. Comparable spiro condensation products are also obtained using 4‐hydroxy‐2H‐1‐benzopyran‐2‐one in place of cyclohexane‐1,3‐diones.  相似文献   

9.
Starting from ethyl 5-hydroxy-2-methyl-1-phenylindole-3-carboxylate, a simple and effective approach to the synthesis of pyrido[4,3,2-mn]pyrrolo[3,2,1-de]acridine skeleton of arnoamines A and B, unique pentacyclic alkaloids from the ascidian Cystodytes sp., has been developed. Synthesis of this ring system involves seven steps and produces ethyl 4-methoxy-1-methylpyrido[4,3,2-mn]pyrrolo[3,2,1-de]acridine-2-carboxylate in 41.5% overall yield.  相似文献   

10.
Several new benzo[ij]pyrano[2,3‐b]quinolizine‐8‐ones 5 and 4H‐pyrano[2,3‐b]pyridine 8 derivatives were synthesized from 4‐hydroxyquinolines 1 . Reacting 3‐acetyl‐4‐hydroxy‐1‐phenyl‐1H‐quinoline‐2‐one with dimethylformamide dimethylacetal afforded 3‐(3‐Dimethylarnino‐acryloyl)‐4‐hydroxy‐1‐phenyl‐1H‐quinolin‐2‐one 9 . This reacted with hippuric acid and diethyl 3‐oxoglutarate to give 2H‐pyran‐2‐one 13 and pyranopyridoquinoline 17 respectively.  相似文献   

11.
Since deregulation of the tyrosine‐kinase receptor c‐Met is implicated in several human cancers and is an attractive target for small‐molecule‐drug discovery, we report herein the synthesis of 2,3,4,5‐tetrahydro‐8‐[1‐(quinolin‐6‐ylmethyl)‐1H‐1,2,3‐triazolo[4,5‐b]pyrazin‐6‐yl]‐1H‐pyrido[4,3‐b]indoles 4a – 4c and 2,3,4,5‐tetrahydro‐8‐[3‐(quinolin‐6‐ylmethyl)‐1,2,4‐triazolo[4,3‐b]pyridazin‐6‐yl]‐1H‐pyrido[4,3‐b]indoles 5a – 5c . These indole derivatives demonstrated inhibition of c‐Met kinase activity. Concurrently, five key intermediates were synthesized. These compounds could be prepared in good yields.  相似文献   

12.
New pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidines, with an associated spiro-3,3′-oxindole attachment, were prepared by three-component combinations of 5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinoline-1,2-dione with a pair of reactants chosen from a pyrazol-5-one, a pyrazole-5-amine, a barbituric acid, or a 6-aminouracil.  相似文献   

13.
2‐(1H ‐benzo[d ]imidazol‐2‐yl)anilines reacted with haloketones including 5‐chloropentan‐2‐one and 6‐chlorohexan‐2‐one catalyzed by iodine, giving benzo[4,5]imidazo[1,2‐c ]pyrrolo[1,2‐a ]quinazoline and 6H ‐benzo[4,5]imidazo[1,2‐c ]pyrido[1,2‐a ]quinazoline derivatives, respectively. This domino‐type reaction formed two new heterocycles and three new covalent bonds in one‐pot procedure and provided a green method for the synthesis of fused pentacyclic heterocycles bearing both quinazoline and benzimidazole moieties in ionic liquids.  相似文献   

14.
Reaction of 5,6‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinoline‐1,2‐dione ( 1 ) with two equivalents of some 6‐aminouracils (or 6‐amino‐2‐thiouracil) generates spirocyclic tetrahydrobenzo[if]quinolizines ( 7 ). The one‐pot, three‐component reaction of amido ketone ( 1 ) with 6‐aminouracil (or 6‐amino‐2‐thiouracil) and a cyclic six‐membered 1,3‐diketone produces spirocyclic tetrahydropyrrolo[3,2,1‐ij]quinolinones ( 15 ).  相似文献   

15.
The Knoevenagel reactions of malononitrile with acetophenone or 4‐substituted acetophenons were carried to give the corresponding 2‐(1‐aryle thylidene)malononitriles, which was further cyclized with sulfur using NaHCO3 as catalysts to generate 2‐amino‐5‐arylthiophene‐3‐carbonitrile 2 . The intermediate enamines 3 were prepared by refluxing of 2 with 5‐substituted‐1,3‐cyclohexanedione using p‐toluenesulfonic acid as catalyst. The title compounds 4‐amino‐3‐aryl ‐7‐substituted‐7,8‐dihydrothieno[2,3‐b]quinolin‐5(6H)‐one were synthesized by cyclization of 3 in the presence of K2CO3 and Cu2Cl2. The structures of all compounds were characterized by elemental analysis, IR, MS, and 1H‐NMR spectra.  相似文献   

16.
The diastereoselective synthesis of 6‐aroyl‐3,5‐diarylspiro[cyclohexa‐2,4‐diene‐1,2′2′,3′‐dihydro‐1′H‐benzo[e]indoles] 6 and ‐benzo[g]indoles] 7 from 2,4,6‐triarylpyrylium perchlorates 1 and in situ generated 2‐methylene‐2,3‐dihydro‐1H‐benzo[e]indoles 3 or ‐benzo[g]indoles 5 (anhydrobases of the corresponding 2‐methyl‐1H‐benzo[e]indolium perchlorates 2 and 2‐methyl‐3H‐benzo[g]indolium perchlorates 4 , respectively) in the presence of triethylamine/acetic acid in ethanol by a 2,5‐[C4+C2] pyrylium ring transformation is reported. Spectroscopic data of the transformation products and their mode of formation are discussed.  相似文献   

17.
2,3‐Dihydro‐6‐hydroxy‐5‐methoxy‐7H‐dibenzo[de,h]quinolin‐7‐one, 6‐hydroxy‐5‐methoxy‐7H‐dibenzo[de,h]quinolin‐7‐one, and 2‐(6,7‐dimethoxy‐3,4‐dihydroisoquinolin‐1‐yl)benzyl benzoate, easily available by a Bischler–Napieralski cyclization, were used as starting materials to afford 6‐oxoisoaporphine and 2,3‐dimethoxy‐5,6,8,12b‐tetrahydroisoindolo[1,2‐a]isoquinoline as the main products. However, the catalytic hydrogenation of the benzyl benzoate derivative afforded, under mild conditions, 1,2,3,4‐tetrahydro‐6,7‐dimethoxy‐1‐(2‐methylphenyl)isoquinoline.  相似文献   

18.
Reactions of indoline (I), 2-methylindoline (II) and hexahydrocarbazole (III) with α,β-unsaturated acids in the presence of polyphosphoric acid have been investigated. Reaction of 1 with acrylic acid afforded two compounds which were identified as 1,2,4,5-tetrahydro-6H-pyrrolo-[3,2,1-ij] quinolin-6-one (IV) and 2,3,5,6,9,10-hcxahydro-1H-cyclopenta[f lpyrrolo [3,2,1-ij|-quinoline-1,8-dione (VII). The reaction oi 1 with crotonic acid gave compounds V and VIII, analogous-to IV and VII. The reaction of II with acrylic acid yielded two compounds VI and IX, whereas with crotonic acid, only X was isolated. With 111, acrylic acid afforded 5,6,8,9,10. 11,8a,11a-octahydro-4H-pyrido[3,2,1-jk]carbazol-4-one (XI) and a compound with a heretofore unknown ring system, viz., 2,3,5,6,7,8,11,12,5a,8a-decahydro-1H-cyclopenta[h] pyrido [3,2,1-jk |earbazole-1,10-dione. The structures of these compounds were deduced on the basis of their spectral and analytical data.  相似文献   

19.
1,2-Dihydro-3-hydroxy-3H-pyrido[3,2,1-kl]phenothiazines and 1H-pyrido[3,2,1-kl]phenothiazines undergo acid catalyzed disproportionation with intermolecular hydride transfer to form pyrido[3,2,1-kl]phenothiazinium salts and 1,2-dihydro-3H-pyrido[3,2,1-kl]phenothiazines. Sodium borohydride reduction of 3-alkyl- or 3-arylpyrido[3,2,1-kl]phenothiazinium salts gives 3-alkyl- or 3-aryl-1H-pyrido[3,2,1-kl]phenothiazines. In the presence of a proton source, borohydride reduction of pyrido[3,2,1-kl]phenothiazinium fluoroborate or 3-chloropyrido-[3,2,1-kl]phenothiazinium perchlorate gives 1,2-dihydro-3H-pyrido[3,2,1-kl]phenothiazine, while 1H-pyrido[3,2,1-kl]phenothiazine is formed in aprotic solvents with pyridine present.  相似文献   

20.
A rapid, efficient, and original synthesis of novel pyrido[3,2,1-de]phenanthridin-6-ones is reported. First, the key cinnamamide intermediates 8a–f were easily prepared from commercial substituted anilines, cinnamic acid, and 2-bromobenzylbromide in a tandem amidation and N-alkylation protocol. Then, these N-aryl-N-(2-bromobenzyl) cinnamamides 8a–f were subjected to a TFA-mediated intramolecular Friedel-Crafts alkylation followed by a Pd-catalyzed direct C–H arylation to obtain a series of potentially bioactive 4-phenyl-4,5-dihydro-6H,8H-pyrido[3,2,1-de]phenanthridin-6-one derivatives 4a–f in good yields. Finally, the toxicological profile of the prepared final compounds, including their corresponding intermediates, was explored through in silico computational methods, while the acute toxicity toward zebrafish embryos (96 hpf-LC50, 50% lethal concentration) was also determined in the present study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号