首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A time and solvent saving method (accelerated solvent extraction, ASE) for the extraction of anionic surfactants as linear alkylbenzene sulfonates (LAS) and alkylphenols from sediments is presented. The analytes are extracted by methanol at 100 degrees C and 150 atm within 10 min of static and 5 min of dynamic extraction. The presence of methanol and a maximum pressure of 150 atm are essential for the complete extraction of anionic surfactants, whereas the extraction of alkylphenols is independent of both parameters. The extraction of alkylphenolethoxylates yielded only unsatisfactor results. It was demonstrated that the ASE extraction is selective for LAS surfactants, while matrix substances, which are extracted by the methanol extraction and interfere with the target analytes during the HPLC-run, remain in the sample. Thus, a further clean-up procedure of the ASE extract is not necessary.  相似文献   

2.
Synthetic surfactants are economically important chemicals, as they are widely used in household cleaning detergents, textiles, paints, polymers and personal care products. In this work we have developed a method capable of the isolation and analysis of the most widely used surfactants (linear alkylbenzene sulfonates, LAS, nonylphenol ethoxylates, NPEO, and alcohol ethoxylates, AEO) and their main degradation products (sulfophenyl carboxylic acids, SPC, nonylphenol ethoxycarboxylates, NPEC, and polyethylene glycols, PEG) in aqueous and solid environmental matrices. First, analytes were extracted by ultrasonic extraction from sediments and suspended solids using methanol at 50°C as solvent and 3 cycles (30 min per cycle). Clean-up and pre-concentration of the extracts and water samples were carried out by solid-phase extraction (SPE), using Oasis HLB cartridges. Recoveries were generally about 80% for most compounds. Identification and quantification of target compounds were performed by liquid chromatography-time-of-flight-mass spectrometry (LC-ToF-MS), which has been much less used in the field of environmental analysis than other MS techniques. Examples which illustrate the possible advantages of this technique for multi-analyte analysis of target and non-target contaminants in environmental samples are provided. Finally, the methodology developed here was validated by measuring the concentration of surfactants and their metabolites in selected marine sediment and seawater samples collected in Long Island Sound (NY), and in influent and effluent wastewater from Stony Brook treatment plant (NY). This paper presents some of the first data relative to the occurrence of PEG in the environment, especially in sediments where concentrations were generally higher (up to 1490 μg/kg) than those for other classes of targeted surfactants and their metabolites.  相似文献   

3.
Accelerated solvent extraction (ASE) was applied to the extraction of saikosaponin a, saikosaponin c and saikosaponin d from the roots of Bupleurum falcatum. Main extraction parameters such as the extraction solvents, extraction temperature and static extraction time were investigated and optimized. The optimized procedure employed 70% methanol as extraction solvent, 120°C of extraction temperature, 10 min of static extraction time, 60% of flush volume and the extraction recoveries of the three compounds were near to 100% with one extraction cycle. The extracted samples were analyzed by HPLC with UV detector. The HPLC conditions were as follows: Hypersil ODS2 (4.6 mm×250 mm, 5 μm) column, acetonitrile and water as mobile phase, flow rate of 1.0 mL/min, UV detection wavelength of 204 nm and injection volume of 20 μL. Compared with the traditional methods including heat‐reflux extraction and ultrasonic‐assisted extraction, the proposed ASE method was more efficient and faster to be operated. The results indicated that ASE was an alternative method for extracting saikosaponins from the roots of B. falcatum.  相似文献   

4.
The direct extraction of alkylphenols, chlorophenols and bisphenol A from an acid-digested sediment suspension for GC-MS analysis was studied. The sediment was digested with acid while the hydrolyzed analytes were being extracted with dichloromethane. The conditions of the acid digestion and extraction were optimized in terms of time, acidity of digestion, and extracting solvent. It is possible to complete the extraction within 20 min with 5 ml of 0.1 M HCl digesting solution and three portions of 5 ml of dichloromethane. The recoveries of analytes were mostly around 90% with about 10% relative standard deviations. With this technique parallel treatment of large numbers of sediment samples is possible without any expensive special equipment or heating process. The analytical characteristics of this extraction technique were compared with Soxhlet extraction and the pressurized liquid extraction technique. The technique was examined and evaluated for real environmental sediment samples and certified reference material of natural matrix.  相似文献   

5.
Chiang JS  Huang SD 《Talanta》2008,75(1):70-75
The one-step derivatization and extraction technique for the determination of anilines in river water by dispersive liquid-liquid microextraction (DLLME) is presented. In this method the anilines are extracted by DLLME and derivatized with pentafluorobenzaldehyde (PFBAY) in aqueous solution simultaneously. In this derivatization/extraction method, 0.5 ml acetone (disperser solvent) containing 10 microl chlorobenzene (extraction solvent) and 30 g/l pentafluorobenzaldehyde (PFBAY) dissolved in methanol was rapidly injected by syringe into 5 ml aqueous sample (pH 4.6). Within 20 min the analytes extracted and derivatized were almost finished. After centrifugation, 2 microl sedimented phase containing enriched analytes was determined by GC-MS. The effects of extraction and disperser solvent type and their volume, pH value of sample solution, derivatization and extraction time, derivatization and extraction temperature were investigated. Linearity in this developed method was ranging from 0.25 to 70 microg/l, and the correlation coefficients (R2) were between 0.9955 and 0.9989, and reasonable reproducibility ranging from 5.8 to 11.8% (n=5). Method detection limits (MDLs) ranged from 0.04 to 0.09 microg/l (n=5).  相似文献   

6.
A consecutive preparation method based upon accelerated solvent extraction (ASE) coupled with high‐speed counter‐current chromatography (HSCCC) was presented and aesculin was obtained from Cortex fraxinus. The extraction condition of ASE was optimized with response surface methodology; some significant parameters such as the solvent system and its stability, the amount of loading sample in HSCCC were also investigated. The original sample was first extracted with methanol at 105°C and 104 bar for 7 min using ASE, then the extracts were consecutively introduced into the HSCCC system and separated and purified with the same ethyl acetate/n‐butanol/water (7:3:10, v/v/v) solvent system for five times without further exchange and equilibrium. About 3.1 ± 0.2 mg/g in each time and total of 15.4 mg/g aesculin with purity over 95% was isolated from Cortex fraxinus. The results demonstrated that the consecutive preparation method was time and solvent saving and high throughput, it was suitable for isolation of aesculin from Cortex fraxinus, and also has good potential on the separation and purification of effective compounds from natural product.  相似文献   

7.
A method is described for the determination of non-ionic surfactants in the concentration range 0.05–2 mg l-1.Surfactant molecules are extracted into 1,2-dichlorobenzene as a neutral adduct with potassium tetrathiocyanatozincate(II) and the determination is completed by atomic absorption spectrometry. With a 150-ml water sample, the limit of detection is 0.03 mg l-1(as Triton X-100).The method requires a single phase separation step, is applicable, without modification, to fresh, estuarine and sea-water samples and is relatively free from interference by anionic surfactants; the presence of up to 5 mg l-1 of anionic surfactant (as LAS) introduces an error of no more than 0.07 mg l-1 (as Triton X-100) in the apparent non-ionic surfactant concentration.  相似文献   

8.
采用快速溶剂萃取(ASE)技术和高效液相色谱法测定某球形药中叠氮硝胺(DIANP)、硝化甘油(NG)和Ⅱ号中定剂(C2)的含量.ASE提取条件:二氯甲烷做萃取溶剂,萃取温度100℃,静态萃取10min,萃取2次.HPLC测定条件:YWGC18柱(150×4.6mm,10μm),以甲醇和水作为流动相,梯度洗脱,流速1 mL/min,检测波长210nm.测定结果表明DIANP、NG、C2平均回收率分别为99.6%、100.3%、99.4%,RSD分别为0.7%、0.8%、0.9%(n=5),检出限分别为2.1、1.5和0.2mg/L,线性范围分别为0.02~0.98g/L,0.03~1.38g/L,0.002~0.124g/L.用此方法共检测某批球形发射药样品5份,检测结果与滴析-HPLC法检测结果相当.  相似文献   

9.
Terpenes, e. g. (+)-alpha-pinene, (-)-camphene, (-)-(-pinene, myrcene, R-(+)-limonene, eucalyptol, (+/-)-linalool, (-)-bornyl acetate, (-)-trans-caryophyllene, and alpha-humulene were determined in leaves of walnut trees from the Juglandaceae family (walnut tree, royal (J. regia L.), black (J. nigra L.), and Siebold (J. sieboldiana, var. Cordiformis Lam.) using gas chromatography with mass spectrometric detection. Terpenes were repeatedly (3 cycles, 5 min each) extracted from leaves of walnut trees by accelerated (pressurized) solvent extraction (ASE) 150 bar and 120 degrees C. The efficiency of ASE extraction was superior to that of steam distillation, solvent extraction according to Soxhlet, sonication, and extraction by agitation. Differences in relative concentrations and distribution of terpenes were studied in dependence on the species of walnut tree and on different locations.  相似文献   

10.
A time- and solvent-saving method, pressurized liquid extraction (PLE), to extract 4-nonylphenol (4-NP) in sediment was developed. The effects of various operational parameters (i.e., temperature, pressure, etc.) for the quantitative extraction of 4-NP by PLE were investigated. The analytes were then identified and quantitated by a large-volume injection GC-MS technique. The 4-NP can be completely extracted by methanol at 100 degrees C and 100 atm combined with 15 min static and then 10 min dynamic extraction steps (1 atm = 101,325 Pa). Recovery of 4-NP in spiked blank kaolin samples was 98% with 5% RSD. The degrees of recovery of 4-NP in the spiked sediment samples from a reservoir and a polluted river were 111% with 4% RSD and 106% with 5% RSD, respectively. The perfect applicability of PLE for 4-NP was determined after testing it with spiked and aged samples. The extraction efficiency of the PLE was compared with conventional Soxhlet and bath ultrasonication extraction methods using the spiked sediment samples.  相似文献   

11.
A range of conventional, i.e. maceration, percolation, ultrasonic assisted, Soxhlet and Soxtec extraction (STE), to advanced extraction techniques of accelerated solvent extraction (ASE) was utilized for the first time in order to optimize the extract yield and recovery of phenolics—gallic acid (GA), rutin (RT) and quercetin (QT)—quantified via ultra-high performance liquid chromatography with diode array detector (UHPLC–DAD). The effect of solvents (n-hexane, dichloromethane and methanol) and temperature (60, 80 and 100°C) upon extraction yield, phenolic content and antioxidant activity (DPPH, ABTS and DPPH) was studied, and the method was validated in commercial food samples from Saudi Arabia, China and India. A high extract yield with percentage recovery was observed for STE (1221.10 mg/5 g; 24.42%) and ASE techniques (91.50 mg/1 g; 9.15%) in methanol at 100°C. UHPLC–DAD showed retention times (min) of 0.67, 1.93 and 1.90 for GA, RT and QT, respectively in the shortest runtime of 3 min. The yield for phenolics was higher for STE/ASE (ppm): 15.27/15.29 (GA), 85.24/37.56 (RT) and 52.20/33.40 (QT), respectively. In terms of antioxidant activities, low IC50 values (μg/ml) of 1.09/1.18 (DPPH), 2.11/5.32 (ABTS) and 4.35/7.88 (phenazine methosulfate–nicotinamide adenine dinucleotide) were observed for STE and ASE, respectively. Multivariate analysis for STE showed a significant (P = 0.000) correlation for extraction type vs. extract yield and phenolics content; however, there was no significance for antioxidant activities vs. extraction type. ASE showed a positive correlation for solvent vs. extraction yield, phenolics and antioxidant activity; however, there was no correlation for extraction yield and DPPH activity. Principal component analysis for STE showed a major variability (52.02%) for extraction yield and phenolics in PC1 followed by PC2 (38.30%) for antioxidant activities. For ASE, PC1 (48.68%) showed a positive correlation for solvent vs. extraction yield and phenolics while PC2 (33.12%) showed a positive correlation for temperature and antioxidant activities. STE and ASE were the optimized extraction techniques for the garlic food sample while a significant effect of solvent and temperature was observed upon extraction yield, phenolics and antioxidant activity.  相似文献   

12.
Guo P  Guan Z  Wang W  Chen B  Huang Y 《Talanta》2011,84(2):587-592
In this paper, the potential use of multiwalled carbon nanotubes (MWCNTs) as solid phase extraction (SPE) adsorbent was evaluated for preconcentration of linear alkylbenzene sulfonates (LAS) using ion-pair (IP)-SPE with tetrabutylammonium hydroxide (TBAH). The LAS homologues present in the aqueous sample were ion-paired with TBAH and the solution was passed through the MWCNT cartridges. The analytes retained in the cartridge were eluted with methanol and the concentrated methanol extract was analysed by HPLC-UV. In order to obtain the satisfactory recovery of LAS homologues, various parameters including the type and amount of the ion-pair reagents, the desorption and enrichment conditions such as the effect of eluent and its volume, pH, the flow rate, the ultrasonic time of sample, and the volume of sample solution were systematically optimized. Under the optimal conditions, LAS homologues could be easily extracted by the proposed SPE cartridge. The favorable limits of detection (LOD) for LAS homologues were in the range from 0.02 to 0.03 μg L−1, and the relative standard deviations (RSDs) were 1.55-2.54% for 10 μg L−1 LAS (n = 6). The proposed method has been successfully applied for the analysis of LAS homologues in aqueous environmental samples. A comparison study with ion-pair solid extraction on MWCNTs, C8 and C18 as adsorbents for LAS demonstrated that ion pair-based solid extraction on MWCNTs adsorbent was advantageous over C8 and C18, the widely used traditional adsorbents.  相似文献   

13.
Accelerated solvent extraction (ASE) of vanilla beans has been optimized using ethanol as a solvent. A theoretical model is proposed to account for this multistep extraction. This allows the determination, for the first time, of the total amount of analytes initially present in the beans and thus the calculation of recoveries using ASE or any other extraction technique. As a result, ASE and Soxhlet extractions have been determined to be efficient methods, whereas recoveries are modest for maceration techniques and depend on the solvent used. Because industrial extracts are obtained by many different procedures, including maceration in various solvents, authenticating vanilla extracts using quantitative ratios between the amounts of vanilla flavor constituents appears to be unreliable. When authentication techniques based on isotopic ratios are used, ASE is a valid sample preparation technique because it does not induce isotopic fractionation.  相似文献   

14.
建立了茶叶中13种有机氯和10种拟除虫菊酯农药残留量的气相色谱-负化学离子源.质谱(GC-NCl-MS)分析方法.茶叶样品用V(丙酮):V(CH2Cl2)=1:1混合液作提取剂经加速溶剂萃取,提取液经凝胶色谱净化除去大部分的色素、脂类和蜡质,再经活性炭-氨基(Carb-NH2)复合小柱和Florisil小柱净化后,用GC-NCl-MS的选择离子监测方式(SIM)进行定性和定量分析.添加50μg/kg 浓度水平时,农药回收率在45.6%~112.4%之间,相对标准偏差在0.57%~10.1%之间;方法的检出限(3倍信噪比)在0.05~10.0μg/kg之间.方法适用于出口茶叶农残检测实际工作.  相似文献   

15.
Isoflavone derivatives from freeze-dried soybeans were extracted by pressurized liquid extraction (PLE) and determined by reverse-phase high performance liquid chromatography (HPLC) with both photo diode array and mass spectrometry (MS) detection. Both real and spiked samples were used in the development of the method.Several extraction solvents (methanol (MeOH) and ethanol (EtOH), 30-80% in water and water), temperatures (60-200 °C), pressures (100-200 atm), as well as the sample size (0.5-0.05 g) and cycle length (5-10 min) were studied for the optimization of the extraction protocol. The optimized extraction conditions for quantitative recoveries were: 0.1 g of sample, 100 °C, three (7 min) static extraction cycles and ethanol 70% as extracting solvent. The stability of the isoflavones during the PLE was also determined. Under PLE conditions, degradation of malonyl glucoside forms of the isoflavones takes place using temperatures higher than 100 °C whereas degradation of glucosides takes place above 150 °C. Using the optimized protocol, isoflavones can be extracted from freeze-dried soybeans without degradation.  相似文献   

16.
A method has been developed for species-selective analysis of organotin compounds in solid, biological samples. The procedure is based on accelerated solvent extraction (ASE) of analytes and includes extraction of the tin species with a methanol–water (90% methanol) solution of acetic acid/sodium acetate containing tropolone (0.03% w/v), their ethylation with NaBEt4, and separation and detection by GC–FPD. The analytical procedure was optimized with an unspiked sample of harbor porpoise (Phocoena phocoena) liver. Effects of ASE operational variables (extraction temperature and pressure, solvent composition, number of static extraction steps) are discussed. Method detection limits (MDL) were in the range 6–10 ng(Sn) g–1 dry weight and 7–17 ng(Sn) g–1 dry weight for butyl- and phenyltin compounds, respectively. Recoveries were comparable with or better than those obtained by use of other procedures reported in the literature. The analytical procedure was validated by analysis of NIES No. 11 (fish tissue) certified reference material.  相似文献   

17.
Abstract

The Accelerated solvent extraction (ASE) of PAHs (23 2- to 6-ring species) spiked onto glass fibre filters (GFFs) was studied as a function of variable extraction solvents, pressure, temperature and extraction times. Acceptable recoveries (85% ± 15%) were obtained for certain combinations of conditions and a tentative method (1500 psi, 150°C, 70:30 hexane:acetone mixture, 7 min heat-up time, 5 min static extraction time, 60% flush volume, 2 static cycles was selected for further testing. However, this method did not prove as effective as the traditional Soxhlet method of extraction when these parameters were used to extract native PAHs from ambient atmospheric particulate matter collected on a GFF by Integrated Atmospheric Deposition Network (IADN) sampling protocols. The extraction recovery study for spiked GFFs was repeated using slightly different extraction conditions: 2000 psi, 100°C, 70:30 hexane:acetone, 5 min heat-up time, 5 min static extraction time, 150% flush volume, 3 static cycles. When this method was applied to the extraction of native PAHs from ambient atmospheric particulate matter collected on GFFs, the results showed equivalent or better recoveries to that of the Soxhlet method. The total time of extraction was 25 min requiring only 30 mL of solvent. This ASE method is presently used to quantitatively determine PAHs in IADN particle-phase samples.  相似文献   

18.
An accelerated solvent extraction (ASE) device was evaluated as a semi-automated means of extracting arsenicals from ribbon kelp. The effect of the experimentally controllable ASE parameters (pressure, temperature, static time, and solvent composition) on the extraction efficiencies of arsenicals from seaweed was investigated. The extraction efficiencies for ribbon kelp (approximately 72.6%) using the ASE were fairly independent ¶(< 7%) of pressure, static time and particle size after 3 ASE extraction cycles. The optimum extraction conditions for the ribbon kelp were obtained by using a 3 mL ASE cell, 30/70 (w/w) MeOH/H2O, 500 psi (1 psi = 7 KPa), ambient temperature, 1 min heat step, 1 min static step, 90% vol. flush, and a 120 s purge. Using these conditions, two other seaweed products produced extraction efficiencies of 25.6% and 50.5%. The inorganic species present in the extract represented 62.5% and 27.8% of the extracted arsenic. The speciation results indicated that both seaweed products contained 4 different arsenosugars, DMA (dimethylarsinic acid), and As(V). One seaweed product also contained As(III). Both of these seaweed products contained an arsenosugar whose molecular weight was determined to be 408 and its structure was tentatively identified using ion chromatography-electrospray ionization-mass spectrometry/mass spectrometry (IC-ESI-MS/MS).  相似文献   

19.
A new method has been developed for the simultaneous determination of the most frequently used anionic surfactants - linear alkylbenzene sulfonates (LAS), alkyl ethoxysulfates (AES) and alkyl sulfates (AS) - in aqueous and sediment samples. Preconcentration and purification of water samples are carried out by means of solid-phase extraction (SPE). The efficiency of two different extraction methods for the analysis of sediments - Soxhlet extraction and pressurized liquid extraction (PLE) - has been compared. Identification and quantification of the target compounds is performed using a liquid chromatography - mass spectrometry (LC-MS) system equipped with an electrospray interface (ESI) in negative ion-mode. Homologue recoveries are 85-123% for SPE, 94-112% for Soxhlet extraction and 81-125% for PLE in the case of LAS, and 60-94% for SPE, 61-109% for Soxhlet extraction and 55-99% for PLE in the case of AES, whereas the limits of detection are 0.1-0.5 ngml(-1) in water and 1-5 ngg(-1) in sediment. This method has been applied to the determination of anionic surfactants in the Guadalete estuary (SW Spain), and LAS concentration levels from 538 to 1014 ngg(-1) in sediments and from 25.1 to 64.4 ngml(-1) in waters have been found. AES values from 168 to 536 ngg(-1) in sediments and from 4.5 to 11.9 ngml(-1) in waters are reported for the first time in European rivers.  相似文献   

20.
An accelerated solvent extraction (ASE) device was evaluated as a semi-automated means of extracting arsenicals from ribbon kelp. The effect of the experimentally controllable ASE parameters (pressure, temperature, static time, and solvent composition) on the extraction efficiencies of arsenicals from seaweed was investigated. The extraction efficiencies for ribbon kelp (approximately 72.6%) using the ASE were fairly independent (< 7%) of pressure, static time and particle size after 3 ASE extraction cycles. The optimum extraction conditions for the ribbon kelp were obtained by using a 3 mL ASE cell, 30/70 (w/w) MeOH/H2O, 500 psi (1 psi = 7 KPa), ambient temperature, 1 min heat step, 1 min static step, 90% vol. flush, and a 120 s purge. Using these conditions, two other seaweed products produced extraction efficiencies of 25.6% and 50.5%. The inorganic species present in the extract represented 62.5% and 27.8% of the extracted arsenic. The speciation results indicated that both seaweed products contained 4 different arsenosugars, DMA (dimethylarsinic acid), and As(V). One seaweed product also contained As(III). Both of these seaweed products contained an arsenosugar whose molecular weight was determined to be 408 and its structure was tentatively identified using ion chromatography-electrospray ionization-mass spectrometry/mass spectrometry (IC-ESI-MS/MS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号