首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epitaxial AlN films have been grown on SiC substrate by molecular beam epitaxy (MBE) and migration-enhanced epitaxy (MEE) using radio frequency (RF) plasma-excited nitrogen. In the RF-MBE growth, the growth rates have been found to be almost constant and the crystal quality improved with increasing the substrate temperature up to 850°C. Further increases of substrate temperature decreased the growth rate and degraded the crystal quality. Using the optimum substrate temperature of 850°C and optimizing the shutter open time, smooth AlN films with atomic force microscope roughness as low as 0.2 nm have been grown by RF-MEE growth.  相似文献   

2.
Electronic structures of edge dislocations in InN films are studied using the first-principles calculation. We found that dangling-bond states of In atoms localized in the dislocation core are located above the conduction-band bottom and thus supplies the electron carriers to the conduction band of bulk InN, in agreement with the experimental suggestion by Wang et al. [Appl. Phys. Lett. 90 (2007) 151901]. Moreover, it is shown that the Fermi energy in the conduction band has the tendency to be pinned at the energy positions of N-related dangling-bond states.  相似文献   

3.
A mercury indium telluride (MIT) ingot was grown by the vertical Bridgman method. The defects in MIT crystals were characterized by the chemical etching method. A defect etchant for MIT crystals was developed. The etch pits of dislocations, microcracks and boundary was observed by scanning electron microscopy. It was elucidated that the etch pits density of dislocations of MIT wafers was about 4×105 cm−2. Te and In reduced at the grain boundaries, but were homogeneously distributed within the grains in the as-grown MIT crystals. The distribution of In in MIT crystals along the growth direction and radial direction was analyzed by electronic probe microscopy. It was found that In concentration was higher in the initial part and lower in the final part of the MIT ingot, which indicated that the segregation coefficient of In in MIT crystals was 1.15. The radial In concentration increased from the center to edge of the wafers and homogeneous in the middle part.  相似文献   

4.
It is demonstrated that the NEXAFS spectra are a “fingerprint” of the symmetry and the composition of the binary nitrides GaN, AlN and InN, as well as of their ternary alloys In0.16Ga0.84N and AlyGa1−yN. From the angular dependence of the N-K-edge NEXAFS spectra, the hexagonal symmetry of the under study compounds is deduced and the (px, py) or pz character of the final state is identified. The energy position of the absorption edge (Eabs) of the binary compounds GaN, AlN and InN is found to red-shift linearly with the atomic number of the cation. The Eabs of the AlyGa1−yN alloys takes values in between those corresponding to the parent compounds AlN and GaN. Contrary to that, the Eabs of In0.16Ga0.84N is red-shifted relative to that of GaN and InN, probably due to ordering and/or phase separation phenomena. The EXAFS analysis results reveal that the first nearest-neighbour shell around the N atom, which consists of Ga atoms, is distorted in both GaN and AlxGa1−xN for x<0.5.  相似文献   

5.
Void formation at the interface between thick AlN layers and (0 0 0 1) sapphire substrates was investigated to form a predefined separation point of the thick AlN layers for the preparation of freestanding AlN substrates by hydride vapor phase epitaxy (HVPE). By heating 50–200 nm thick intermediate AlN layers above 1400 °C in a gas flow containing H2 and NH3, voids were formed beneath the AlN layers by the decomposition reaction of sapphire with hydrogen diffusing to the interface. The volume of the sapphire decomposed at the interface increased as the temperature and time of the heat treatment was increased and as the thickness of the AlN layer decreased. Thick AlN layers subsequently grown at 1450 °C after the formation of voids beneath the intermediate AlN layer with a thickness of 100 nm or above self-separated from the sapphire substrates during post-growth cooling with the aid of voids. The 79 μm thick freestanding AlN substrate obtained using a 200 nm thick intermediate AlN layer had a flat surface with no pits, high optical transparency at wavelengths above 208.1 nm, and a dislocation density of 1.5×108 cm−2.  相似文献   

6.
The structure of clean and reconstructed cubic AlN (0 0 1) surfaces has been investigated from first principles. In the nitrogen rich part of the phase diagram, a nitrogen termination has been found to be favored. Under aluminum-rich conditions, a contracted adlayer of Al-atoms on top of an Al-termination is favored.  相似文献   

7.
We explored some unique defects in a batch of cadmium zinc telluride (CdZnTe) crystals, along with dislocations and Te-rich decorated features, revealed by chemical etching. We extensively investigated these distinctive imperfections in the crystals to identify their origin, dimensions, and distribution in the bulk material. We estimated that these features ranged from 50 to 500 μm in diameter, and their depth was about ∼300 μm. The density of these features ranged between 2×102 and 1×103 per cm3. We elaborated a model of them and projected their effect on charge collection and spectral response. In addition, we fabricated detectors with these defective crystals and acquired fine details of charge-transport phenomena over the detectors’ volume using a high-spatial resolution (25 μm) X-ray response mapping technique. We related the results to better understand the defects and their influence on the charge-transport properties of the devices. The role of the defects was identified by correlating their signatures with the findings from our theoretical model and our experimental data.  相似文献   

8.
The electrical and optical properties of Mg-doped a- and c-plane GaN films grown by metalorganic vapor phase epitaxy were systematically investigated. The photoluminescence spectra of Mg-doped a- and c-plane GaN films exhibit strong emissions related to deep donors when Mg doping concentrations are above 1×1020 cm−3 and 5×1019 cm−3, respectively. The electrical properties also indicate the existence of compensating donors because the hole concentration decreases at such high Mg doping concentrations. In addition, we estimated the ND/NA compensation ratio of a- and c-plane GaN by variable-temperature Hall effect measurement. The obtained results indicate that the compensation effect of the Mg-doped a-plane GaN films is lower than that of the Mg-doped c-plane GaN films.  相似文献   

9.
Indium-doped Cd1−xZnxTe (CZT:In) single crystals were annealed by a two-step method, including a high-temperature step and a low-temperature step in sequence. IR transmittance spectrum, IV curve and PL spectrum were used to characterize the CZT single crystals. After annealing, the opto-electrical properties of the CZT:In crystals were improved obviously. The average IR transmittance was remarkably increased by about 23%, and the resistivity was enhanced by as high as four orders of magnitude. In the PL spectra, the intensity of the (D0, X) peak prominently increased, and the full-width-at-half-maximum was reduced. Meanwhile, the intensity of the DAP peak decreased greatly, and the structure became practically indistinguishable from the background. Moreover, the intensity of the Dcomplex peak also decreased. The investigation shows that these improvements in the physical properties after annealing are due to variations in the micro-structures. The two-step annealing method can eliminate precipitates/inclusions, remove impurities, compensate Cd vacancies, decrease dislocations and reduce internal stress.  相似文献   

10.
We have applied positron annihilation spectroscopy to study in-grown vacancy defects in bulk GaN crystals grown by the ammonothermal method. We observe a high concentration of Ga vacancy related defects in n-type samples in spite of the low growth temperature, suggesting that oxygen impurities promote the formation of vacancies also through other mechanisms than a mere reduction of thermodynamical formation enthalpy. On the other hand, no positron trapping at vacancy defects is observed in Mg-doped p-type samples, as expected when the Fermi level is close to the valence band and intrinsic defects are dominantly positively charged. Annealing of the samples at temperatures well above the growth temperature is found to change significantly the defect structure of the material.  相似文献   

11.
The crystallographic tilt of the lateral epitaxial overgrown (LEO) GaN on sapphire substrate with SiNx mask is investigated by double crystal X-ray diffraction. Two wing peaks beside the GaN 0002 peak can be observed for the as-grown LEO GaN. During the selective etching of SiNx mask, each wing peak splits into two peaks, one of which disappears as the mask is removed, while the other remains unchanged. This indicates that the crystallographic tilt of the overgrown region is caused not only by the plastic deformation resulted from the bending of threading dislocations, but by the non-uniformity elastic deformation related with the GaN/SiNx interfacial forces. The widths of these two peaks are also studied in this paper.  相似文献   

12.
We have obtained high-quality, crack-free AlN wafers using a convex thermal field inside the growth chamber. Free-standing AlN boules of 15 mm in height and 15 mm in diameter were grown. The carbon concentration was found to be similar in all parts of the boule (∼8×1018 cm−3) while the initial O concentration was higher (∼1×1019 cm−3) and slightly decreased during growth. It was found that O incorporated differently on different crystallographic faces. High resolution XRD showed a continuous improvement in crystal quality as a function of boule length. The full width at half maximum (FWHM) of the double crystal rocking curves decreased from 78 in at the beginning of growth to 13 in at the growth end. To the best of our knowledge, this is the first report on impurity incorporation on different crystallographic facets obtained from the same boule.  相似文献   

13.
The dependency of LPE growth rate and dislocation density on supersaturation in the growth of GaN single crystals in the Na flux was investigated. When the growth rate was low during the growth of GaN at a small value of supersaturation, the dislocation density was much lower compared with that of a substrate grown by the Metal Organic Chemical Vapor Deposition method (MOCVD). In contrast, when the growth rate of GaN was high at a large value of supersaturation, the crystal was hopper including a large number of dislocations. The relationship between the growth conditions and the crystal color in GaN single crystals grown in Na flux was also investigated. When at 800 °C the nitrogen concentration in Na–Ga melt was low, the grown crystals were always tinted black. When the nitrogen concentration at 850 °C was high, transparent crystals could be grown.  相似文献   

14.
We report on the epitaxial growth of the intrinsic ferromagnetic semiconductor GdN on Si (1 1 1) substrates buffered by a thick AlN layer, forming a heteroepitaxial system with promise for spintronics. Growth is achieved by depositing Gd in the presence of unactivated N2 gas, demonstrating a reactivity at the surface that is sufficient to grow near stoichiometric GdN only when the N2:Gd flux ratio is at least 100. Reflection high-energy electron diffraction and X-ray diffraction show fully (1 1 1)-oriented epitaxial GdN films. The epitaxial quality of the films is assessed by Rutherford backscattering spectroscopy carried out in random and channelling conditions. Magnetic measurements exhibit a Curie temperature at 65 K and saturation magnetisation of 7 μB/Gd in agreement with previous bulk and thin-film data. Hall effect and resistance data establish that the films are heavily doped semiconductors, suggesting that up to 1% of the N sites are vacant.  相似文献   

15.
Large and thick AlN bulk single crystals up to 43 mm in diameter and 10 mm in thickness have been successfully grown on 6H-SiC (0 0 0 1) substrates by the sublimation method using a TaC crucible. Raman spectrum indicates that the polytype of the grown AlN single crystals is a Wurtzite-2H type structure, and the crystals do not include any impurity phases. The quality at the top of the crystal improves as crystal thickness increases along the 〈0 0 0 1〉 direction during growth: a low etch pit density (7×104 cm−2) and a small full width at half maximum for a 0002 X-ray rocking curve (58 arcsec) have been achieved at a thickness of ∼8 mm. The possible mechanism behind the improvement in the AlN crystal quality is also discussed.  相似文献   

16.
17.
Bulk AlN–SiC mixed single crystals are prepared by sublimation growth employing pure AlN or mixed AlN–SiC sources and 6H-SiC seed crystals. As the growth temperature is increased from 1900 to 2050 °C, using seeds with different off-axis orientations, inclined up to 42° from the basal plane toward the (0 1 –1 0)-plane, or using different source materials, crystals with different Si/C contents are obtained. Dependent on the Si and/or C content, crystal coloration changes from yellowish to greenish to blackish. Modification in crystals’ coloration and corresponding changes in below band-gap optical absorption and cathodoluminescence spectra are discussed.  相似文献   

18.
The properties of GaN crystals grown from solution at temperatures ranging from 780 to 810 °C and near atmospheric pressure ∼0.14 MPa, have been investigated using low temperature X-band (∼9.5 GHz) electron paramagnetic resonance spectroscopy, micro-Raman spectroscopy, photoluminescense spectroscopy, and photoluminescence imaging. Our samples are spontaneously nucleated thin platelets of approximate dimensions of 2×2×0.025 mm3, or samples grown on both polycrystalline and single crystal HVPE large-area (∼3×8×0.5 mm3) seeds. Electron paramagnetic resonance spectra consists of a single Lorentzian line with axial symmetry about the c-axis, with approximate g-values, g=1.951 and g=1.948 and a peak-to-peak linewidth of∼4.0 G. This resonance has been previously assigned to shallow impurity donors/conduction electrons in GaN and attributed to Si- and/or O impurities. Room temperature photoluminescence and photoluminescence imaging data from both Ga- and N-faces show different dominant emission bands, suggesting different incorporation of impurities and/or native defects. Raman scattering and X-ray diffraction show moderate to good crystalline quality.  相似文献   

19.
Good quality, large single crystals of CdSe were grown by the modified growth method (i.e., vertical unseeded vapor phase growth with multi-step purification of the starting material in the same quartz ampoule without any manual transfer between the steps). Lower temperature gradients (8–9°C/cm) at the growth interface were used for the crystal growth. As-grown CdSe crystals was characterized by X-ray diffraction, scanning electron microscopy, energy dispersive analyzer of X-rays, high-resistance instrument measurement, and etch-pit observation. It is found that there are two cleavage faces of (1 0 0) and (1 1 0) orientations on the crystal, the resistivity is about 108 Ω cm, and the density of etch pits is about 103–4/cm2. The crystal was cut into wafers and was fabricated into detectors. The detectors were tested using an 241Am radiation source. γ-ray spectra at 59.5 keV were obtained. The results demonstrated that the quality of the as-grown crystals was good. The crystals were useful for fabrication of room-temperature-operating nuclear radiation detectors. Therefore, the modified growth technique is a promising, convenient, new method for the growth of high-quality CdSe single crystals.  相似文献   

20.
The bowing curvature of the free-standing GaN substrate significantly decreased almost linearly from 0.67 to 0.056 m−1 (i.e. the bowing radius increased from 1.5 to 17.8 m) with increase in inductively coupled plasma (ICP) etching time at the N-polar face, and eventually changed the bowing direction from convex to concave. Furthermore, the influences of the bowing curvature on the measured full width at half maximum (FWHM) of high-resolution X-ray diffraction (HRXRD) in (0 0 2) reflection were also deduced, which reduced from 176.8 to 88.8 arcsec with increase in ICP etching time. Decrease in the nonhomogeneous distribution of threading dislocations and point defects as well as VGa–ON complex defects on removing the GaN layer from N-polar face, which removed large amount of defects, was one of the reasons that improved the bowing of the free-standing GaN substrate. Another reason was the high aspect ratio of needle-like GaN that appeared at the N-polar face after ICP etching, which released the compressive strain of the free-standing GaN substrate. By doing so, crack-free and extremely flat free-standing GaN substrates with a bowing radius of 17.8 m could be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号