首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The technique of two-dimensional laser induced fluorescence (2D-LIF) spectroscopy has been used to observe the van der Waals complexes fluorobenzene-Ar and fluorobenzene-Ar(2) in the region of their S(1)-S(0) electronic origins. The 2D-LIF spectral images reveal a number of features assigned to the van der Waals vibrations in S(0) and S(1). An advantage of 2D-LIF spectroscopy is that the LIF spectrum associated with a particular species may be extracted from an image. This is illustrated for fluorobenzene-Ar. The S(1) van der Waals modes observed in this spectrum are consistent with previous observations using mass resolved resonance enhanced multiphoton ionisation techniques. For S(0), the two bending modes previously observed using a Raman technique were observed along with three new levels. These agree exceptionally well with ab initio calculations. The Fermi resonance between the stretch and bend overtone has been analysed in both the S(0) and S(1) states, revealing that the coupling is stronger in S(0) than in S(1). For fluorobenzene-Ar(2) the 2D-LIF spectral image reveals the S(0) symmetric stretch van der Waals vibration to be 35.0 cm(-1), closely matching the value predicted based on the fluorobenzene-Ar van der Waals stretch frequency. Rotational band contour analysis has been performed on the fluorobenzene-Ar 0(0)(0) transition to yield a set of S(1) rotational constants A' = 0.05871 ± 0.00014 cm(-1), B' = 0.03803 ± 0.00010 cm(-1), and C' = 0.03103 ± 0.00003 cm(-1). The rotational constants imply that in the S(1) 0(0) level the Ar is on average 3.488 ? from the fluorobenzene centre of mass and displaced from it towards the centre of the ring at an angle of ~6° to the normal. The rotational contour for fluorobenzene-Ar(2) was predicted using rotational constants calculated on the basis of the fluorobenzene-Ar geometry and compared with the experimental contour. The comparison is poor which, while due in part to expected saturation effects, suggests the presence of another band lying beneath the contour.  相似文献   

2.
The Au-.CO2 ion-molecule complex has been studied by gas phase infrared photodissociation spectroscopy. Several sharp transitions can be identified as combination bands involving the asymmetric stretch vibrational mode of the CO2 ligand. Their frequencies are redshifted by several hundred cm(-1) from the frequencies of free CO2. We discuss our findings in the framework of ab initio and density-functional theory calculations, using anharmonic corrections to predict vibrational transition energies. The infrared spectrum is consistent with the formation of an aurylcarboxylate anion with a strongly bent CO2 subunit.  相似文献   

3.
We report ab initio (SCF-MP2 and CI) calculations on the three-dimensional anharmonic potential and dipole functions of the coupled vibrational modes of the CH chromopore in CD2HF. Predictions of fundamental and overtone spectra are obtained from 3D solutions of the vibrational Schrödinger equation and are compared with experiment. The dominant Fermi and Darling-Dennison coupling constants in the effective Hamiltonian representation of experiment and theory agree well. Predicted overtone band strengths are satisfactory and very sensitive to the dipole function used.  相似文献   

4.
Difluoromethane (CH(2)F(2), HFC-32) is a molecule used in refrigerant mixtures as a replacement of the more environmentally hazardous, ozone depleting, chlorofluorocarbons. On the other hand, presenting strong vibration-rotation bands in the 9 μm atmospheric window, it is a greenhouse gas which contributes to global warming. In the present work, the vibrational and ro-vibrational properties of CH(2)F(2), providing basic data for its atmospheric modeling, are studied in detail by coupling medium resolution Fourier transform infrared spectroscopy to high-level electronic structure ab initio calculations. Experimentally a full quantum assignment and accurate integrated absorption cross sections are obtained up to 5000 cm(-1). Ab initio calculations are carried out by using CCSD(T) theory and large basis sets of either the correlation consistent or atomic natural orbital hierarchies. By using vibrational perturbation theory to second order a complete set of vibrational and ro-vibrational parameters is derived from the ab initio quartic anharmonic force fields, which well compares with the spectroscopic constants retrieved experimentally. An excellent agreement between theory and experiment is achieved for vibrational energy levels and integrated absorption cross sections: transition frequencies up to four quanta of vibrational excitation are reproduced with a root mean square deviation (RMSD) of 7 cm(-1) while intensities are predicted within few km mol(-1) from the experiment. Basis set performances and core correlation effects are discussed throughout the paper. Particular attention is focused in the understanding of the anharmonic couplings which rule the vibrational dynamics of the |ν(1)>, |2ν(8)>, |2ν(2)> three levels interacting system. The reliability of the potential energy and dipole moment surfaces in reproducing the vibrational eigenvalues and intensities as well as in modeling the vibrational and ro-vibrational mixings over the whole 400-5000 cm(-1) region is also demonstrated by spectacular spectral simulations carried out by using the ro-vibrational Hamiltonian constants, and the relevant coupling terms, obtained from the perturbation treatment of the ab initio anharmonic force field. The present results suggest CH(2)F(2) as a prototype molecule to test ab initio calculations and theoretical models.  相似文献   

5.
The A 2A'<--X 2A" electronic transition of the peroxyacetyl radical (PA) is observed employing NIR/VUV ion enhancement, supersonic jet spectroscopy. Rotational envelope simulations yield a rotational temperature for ground state PA of ca. 55 K. Ab initio calculations of transition energies and vibrational frequencies for the A<--X transition assist in the assignment of the observed spectrum. A number of the vibrational modes of the A state are assigned to observed transitions (the O-O stretch 2(1), the COO bend 5(1), and the CCOO backbone bend 6(1)). The calculations and mass spectra suggest that the ground state of the PA ion is repulsive. An increase in rotational linewidth of the overtone of the O-O stretch (2(1)) is observed and discussed in terms of A state dynamics. The O-O stretch anharmonicity is estimated to be 13.35 cm(-1).  相似文献   

6.
《Chemical physics》1987,116(1):33-44
Using an ab initio potential surface the rovibrational states of RbCN are calculated in the atom-(rigid) diatom formalism. From these, infrared transition intensities and vibrationally averaged dipole moments are obtained, using an ab initio dipole surface. The lower vibrational states can be labeled by bend and stretch, for which the fundamental frequencies are 100.4 and 258.0 cm−1. At energies higher than 500 cm−1, many overlapping resonances are found and the vibrational labeling breaks down. The calculated ground-state rotational constants are A = 2.269 cm−1, B = 0.106 cm−1 and C = 0.100 cm−1, with an inertial defect ΔI = 0.687 amu Å2. For the higher vibrational states these parameters are used to study the increasing floppyness of the molecule and its behaviour as an effective linear isocyanide in excited states. At low temperature, the vibrational absorption spectrum only contains the fundamental transitions plus a transition caused by a Fermi resonance between the stretch fundamental and the third bending overtone. At high temperature, the chaotic and quasi-linear states have a marked effect on the absorption spectrum.  相似文献   

7.
The results of anharmonic frequency calculations on neutral imidazole (C3N2H4, Im), protonated imidazole (ImH+), and its complexes with water (ImH+)(H2O)n, are presented and compared to gas phase infrared photodissociation spectroscopy (IRPD) data. Anharmonic frequencies are obtained via ab initio vibrational self-consistent field (VSCF) calculations taking into account pairwise interactions between the normal modes. The key results are: (1) Prediction of anharmonic vibrational frequencies on an MP2 ab initio potential energy surface show excellent agreement with experiment and outstanding improvement over the harmonic frequencies. For example, the ab initio calculated anharmonic frequency for (ImH+)(H2O)N2 exhibits an overall average percentage error of 0.6% from experiment. (2) Anharmonic vibrational frequencies calculated on a semiempirical potential energy surface fitted to ab initio harmonic data represents spectroscopy well, particularly for water complexes. As an example, anharmonic frequencies for (ImH+)H2O and (ImH+)(H2O)2 show an overall average deviation of 1.02% and 1.05% from experiment, respectively. This agreement between theory and experiment also supports the validity and use of the pairwise approximation used in the calculations. (3) Anharmonic coupling due to hydration effects is found to significantly reduce the vibrational frequencies for the NH stretch modes. The frequency of the NH stretch is observed to increase with the removal of a water molecule or replacement of water with N2. This result also indicates the ability of the VSCF method to predict accurate frequencies in a matrix environment. The calculation provides insights into the nature of anharmonic effects in the potential surface. Analysis of percentage anharmoncity in neutral Im and ImH+ shows a higher percentage anharmonicity in the NH and CH stretch modes of neutral Im. Also, we observe that anharmonicity in the NH stretch modes of ImH+ have some contribution from coupling effects, while that of neutral Im has no contribution whatsoever from mode-mode coupling. It is concluded that the incorporation of anharmonic effects in the calculation brings theory and experiment into much closer agreement for these systems.  相似文献   

8.
State-resolved reactions of CH3D molecules containing both C-H and C-D stretching excitation with Cl atoms provide new vibrational spectroscopy and probe the consumption and disposal of vibrational energy in the reactions. The vibrational action spectra have three different components, the combination of the C-H symmetric stretch and the C-D stretch (nu1 + nu2), the combination of the C-D stretch and the C-H antisymmetric stretch (nu2 + nu4), and the combination of the C-D stretch and the first overtone of the CH3 bend (nu2 + 2nu5). The simulation for the previously unanalyzed (nu2 + nu4) state yields a band center of nu0 = 5215.3 cm(-1), rotational constants of A = 5.223 cm(-1) and B = 3.803 cm(-1), and a Coriolis coupling constant of zeta = 0.084. The reaction dynamics largely follow a spectator picture in which the surviving bond retains its initial vibrational excitation. In at least 80% of the reactive encounters of vibrationally excited CH3D with Cl, cleavage of the C-H bond produces CH2D radicals with an excited C-D stretch, and cleavage of the C-D bond produces CH3 radicals with an excited C-H stretch. Deviations from the spectator picture seem to reflect mixing in the initially prepared eigenstates and, possibly, collisional coupling during the reaction.  相似文献   

9.
The infrared spectrum of the Al(+)-H(2) complex is recorded in the H-H stretch region (4075-4110 cm(-1)) by monitoring Al(+) photofragments. The H-H stretch band is centered at 4095.2 cm(-1), a shift of -66.0 cm(-1) from the Q(1)(0) transition of the free H(2) molecule. Altogether, 47 rovibrational transitions belonging to the parallel K(a)=0-0 and 1-1 subbands were identified and fitted using a Watson A-reduced Hamiltonian, yielding effective spectroscopic constants. The results suggest that Al(+)-H(2) has a T-shaped equilibrium configuration with the Al(+) ion attached to a slightly perturbed H(2) molecule, but that large-amplitude intermolecular vibrational motions significantly influence the rotational constants derived from an asymmetric rotor analysis. The vibrationally averaged intermolecular separation in the ground vibrational state is estimated as 3.03 A, decreasing by 0.03 A when the H(2) subunit is vibrationally excited. A three-dimensional potential energy surface for Al(+)-H(2) is calculated ab initio using the coupled cluster CCSD(T) method and employed for variational calculations of the rovibrational energy levels and wave functions. Effective dissociation energies for Al(+)-H(2)(para) and Al(+)-H(2)(ortho) are predicted, respectively, to be 469.4 and 506.4 cm(-1), in good agreement with previous measurements. The calculations reproduce the experimental H-H stretch frequency to within 3.75 cm(-1), and the calculated B and C rotational constants to within approximately 2%. Agreement between experiment and theory supports both the accuracy of the ab initio potential energy surface and the interpretation of the measured spectrum.  相似文献   

10.
CCSD(T) state-of-the-art ab initio calculations are used to determine a vibrationally corrected three-dimensional potential energy surface of dimethyl-ether depending on the two methyl torsions and the COC bending angle. The surface is employed to obtain variationally the lowest vibrational energies that can be populated at very low temperatures. The interactions between the bending and the torsional coordinates are responsible for the displacements of the torsional overtone bands and several combination bands. The effect of these interactions on the potential parameters is analyzed. Second order perturbation theory is used as a help for the understanding of many spectroscopic parameters and to obtain anharmonic fundamentals for the 3N - 9 neglected modes as well as the rotational parameters. To evaluate the surface accuracy and to verify previous assignments, the calculated vibrational levels are compared with experimental data corresponding to the most abundant isotopologue. The surface has been empirically adjusted for understanding the origin of small divergences between ab initio calculations and experimental data. Our calculations confirm previous assignments and show the importance of including the COC bending degree of freedom for computing with a higher accuracy the excited torsional term values through the Fermi interaction. Besides, this work shows a possible lack of accuracy of some available experimental transition frequencies and proposes a new assignment for a transition line. As an example, the transition 100 → 120 has been computed at 445.93 cm(-1), which is consistent with the observed transition frequency in the Raman spectrum at 450.5 cm(-1).  相似文献   

11.
A series of hydrogen bonded complexes involving oxirane and water molecules have been studied. In this paper we report on the vibrational study of the oxirane-water complex (CH(2))(2)O-H(2)O. Neon matrix experiments and ab initio anharmonic vibrational calculations have been performed, providing a consistent set of vibrational frequencies and anharmonic coupling constants. The implementation of a new large flow supersonic jet coupled to the Bruker IFS 125 HR spectrometer at the infrared AILES beamline of the French synchrotron SOLEIL (Jet-AILES) enabled us to record first jet-cooled Fourier transform infrared spectra of oxirane-water complexes at different resolutions down to 0.2 cm(-1). Rovibrational parameters and a lower bound of the predissociation lifetime of 25 ps for the v(OH)(b) = 1 state have been derived from the rovibrational analysis of the ν(OH)(b) band contour recorded at respective rotational temperatures of 12 K (Jet-AILES) and 35 K (LADIR jet).  相似文献   

12.
The authors present a first-principles prediction of the energies of the eight lowest-lying anharmonic vibrational states of CO(2), including the fundamental symmetric stretching mode and the first overtone of the fundamental bending mode, which undergo a strong coupling known as Fermi resonance. They employ coupled-cluster singles, doubles, and (perturbative) triples [CCSD(T) and CCSDT] in conjunction with a range of Gaussian basis sets (up to cc-pV5Z, aug-cc-pVQZ, and aug-cc-pCVTZ) to calculate the potential energy surfaces (PESs) of the molecule, with the errors arising from the finite basis-set sizes eliminated by extrapolation. The resulting vibrational many-body problem is solved by the vibrational self-consistent-field and vibrational configuration-interaction (VCI) methods with the PESs represented by a fourth-order Taylor expansion or by numerical values on a Gauss-Hermite quadrature grid. With the VCI, the best theoretical estimates of the anharmonic energy levels agree excellently with experimental values within 3.5 cm(-1) (the mean absolute deviation). The theoretical (experimental) anharmonic frequencies of the Fermi doublet are 1288.9 (1285.4) and 1389.3 (1388.2) cm(-1).  相似文献   

13.
Copper complexes of ethylenediamine (en), N-methylethylenediamine (meen), N,N-dimethylethylenediamine (dmen), N,N,N'-trimethylethylenediamine (tren), and N,N,N',N'-tetramethylethylenediamine (tmen) are synthesized in laser-vaporization supersonic molecular beams and studied by pulsed-field ionization zero electron kinetic energy (ZEKE) and photoionization efficiency spectroscopies and second-order Moller-Plesset perturbation theory. Precise ionization energies and vibrational frequencies of Cu-en, -meen, and -dmen are measured from the ZEKE spectra, and ionization thresholds of Cu-tren and -tmen are estimated from the photoionization efficiency spectra. The measured vibrational modes span a frequency range of 35-1646 cm(-1) and include metal-ligand stretch and bend, hydrogen-bond stretch, and ligand-based torsion. A number of low-energy structures with Cu binding to one or two nitrogen atoms are predicted for each complex by the ab initio calculations. The combination of the spectroscopic measurements and ab initio calculations has identified a hydrogen-bond-stabilized monodentate structure for the Cu-en complex and bidentate cyclic structures for the methyl-substituted derivatives. The change of the Cu binding from the monodentate to the bidentate mode arises from the competition between copper coordination and hydrogen bonding.  相似文献   

14.
Vibrational frequencies for fundamental, overtone, and combination excitations of sulfuric acid (H2SO4) and of sulfuric acid monohydrate cluster (H2SO4 x H2O) are computed directly from ab initio MP2/TZP potential surface points using the correlation-corrected vibrational self-consistent field (CC-VSCF) method, which includes anharmonic effects. The results are compared with experiment. The computed transitions show in nearly all cases good agreement with experimental data and consistent improvement over the harmonic approximation. The CC-VSCF improvements over the harmonic approximation are largest for the overtone and combination excitations and for the OH stretching fundamental. The agreement between the calculations and experiment also supports the validity of the MP2/TZP potential surfaces. Anharmonic coupling between different vibrational modes is found to significantly affect the vibrational frequencies. Analysis of the mean magnitude of the anharmonic coupling interactions between different pairs of normal modes is carried out. The results suggest possible mechanisms for the internal flow of vibrational energy in H2SO4 and H2SO4 x H2O.  相似文献   

15.
The effect of water on the stability and vibrational states of a hydroxy-isoprene adduct is probed through the introduction of 1-15 water molecules. It is found that when a static nuclear harmonic approximation is invoked there is a substantial red-shift of the alcohol O-H stretch (of the order of 800 cm(-1)) as a result of introduction of water. When potential energy surface sampling and associated anharmonicities are introduced through finite temperature ab initio dynamics, this hydroxy-isoprene OH stretch strongly couples with all the water vibrational modes as well as the hydroxy-isoprene OH bend modes. A new computational technique is introduced to probe the coupling between these modes. The method involves a two-dimensional, time-frequency analysis of the finite temperature vibrational properties. Such an analysis not only provides information about the modes that are coupled as a result of finite-temperature analysis, but also the temporal evolution of such coupling.  相似文献   

16.
High resolution infrared spectra of nitric acid have been recorded in the first OH overtone region under jet-cooled conditions using a sequential IR-UV excitation method. Vibrational bands observed at 6933.39(3), 6938.75(4), and 6951.985(3) cm(-1) (origins) with relative intensities of 0.42(1), 0.38(1), and 0.20(1) are attributed to strongly mixed states involved in a Fermi resonance. A vibrational deperturbation analysis suggests that the optically bright OH overtone stretch (2nu1) at 6939.2(1) cm(-1) is coupled directly to the nu1 + 2nu2 state at 6946.4(1) cm(-1) and indirectly to the 3nu2 + nu3 + nu7 state at 6938.5(1) cm(-1). Both the identity of the zero-order states and the indirect coupling scheme are deduced from complementary CCSD(T) calculations in conjunction with second-order vibrational perturbation theory. The deperturbation analysis also yields the experimental coupling between 2nu1 and nu1 + 2nu2 of -6.9(1) cm(-1), and that between the two dark states of +5.0(1) cm(-1). The calculated vibrational energies and couplings are in near quantitative agreement with experimentally derived values except for a predicted twofold stronger coupling of 2nu1 to nu1 + 2nu2. Weaker coupling of the strongly mixed states to a dense background of vibrational states via intramolecular vibrational energy redistribution is evident from the experimental linewidths of 0.08 and 0.25 cm(-1) for the higher energy and two overlapping lower energy bands, respectively. A comprehensive rotational analysis of the higher energy band yields spectroscopic parameters and the direction of the OH overtone transition dipole moment.  相似文献   

17.
The equilibrium molecular structures of the two lowest-energy conformers of glycine, Gly-Ip and Gly-IIn, have been characterized by high-level ab initio electronic structure computations, including all-electron cc-pVTZ CCSD(T) geometry optimizations and 6-31G* MP2 quartic force fields, the latter to account for anharmonic zero-point vibrational effects to isotopologic rotational constants. Based on experimentally measured vibrationally averaged effective rotational constant sets of several isotopologues and our ab initio data for structural constraints and zero-point vibrational shifts, least-squares structural refinements were performed to determine improved Born-Oppenheimer equilibrium (r(e)) structures of Gly-Ip and Gly-IIn. Without the ab initio constraints even the extensive set of empirical rotational constants available for 5 and 10 isotopologues of Gly-Ip and Gly-IIn, respectively, cannot satisfactorily fix their molecular structure. Excellent agreement between theory and experiment is found for the rotational constants of both conformers, the rms residual of the final fits being 7.8 and 51.6 kHz for Gly-Ip and Gly-IIn, respectively. High-level ab initio computations with focal point extrapolations determine the barrier to planarity separating Gly-IIp and Gly-IIn to be 20.5 +/- 5.0 cm(-1). The equilibrium torsion angle tau(NCCO) of Gly-IIn, characterizing the deviation of its heavy-atom framework from planarity, is (11 +/- 2) degrees. Nevertheless, in the ground vibrational state the effective structure of Gly-IIn has a plane of symmetry.  相似文献   

18.
Full-dimensional ab initio potential-energy surface (PES) and dipole moment surface are constructed for a methane molecule at the CCSD(T)/cc-pVTZ and MP2/cc-pVTZ levels of theory, respectively, by the modified Shepard interpolation method based on the fourth-order Taylor expansion [MSI(4th)]. The reference points for the interpolation have been set in the coupling region of CH symmetric and antisymmetric stretching modes so as to reproduce the vibrational energy levels related to CH stretching vibrations. The vibrational configuration-interaction calculations have been performed to obtain the energy levels and the absorption intensities up to 9000 cm(-1) with the use of MSI(4th)-PES. The calculated fundamental frequencies and low-lying vibrational energy levels show that MSI(4th) is superior to the widely employed quartic force field, giving a better agreement with the experimental values. The absorption bands of overtones as well as combination bands, which are caused by purely anharmonic effects, have been obtained up to 9000 cm(-1). Strongly coupled states with visible intensity have been found in the 6500-9000 cm(-1) region where the experimental data are still lacking.  相似文献   

19.
The dissociation of the hydroxymethyl radical, CH(2)OH, and its isotopolog, CD(2)OH, following the excitation of high OH stretch overtones is studied by quasi-classical molecular dynamics calculations using a global potential energy surface (PES) fitted to ab initio calculations. The PES includes CH(2)OH and CH(3)O minima, dissociation products, and all relevant barriers. Its analysis shows that the transition states for OH bond fission and isomerization are both very close in energy to the excited vibrational levels reached in recent experiments and involve significant geometry changes relative to the CH(2)OH equilibrium structure. The energies of key stationary points are refined using high-level electronic structure calculations. Vibrational energies and wavefunctions are computed by coupled anharmonic vibrational calculations. They show that high OH-stretch overtones are mixed with other modes. Consequently, trajectory calculations carried out at energies about ~3000 cm(-1) above the barriers reveal that despite initial excitation of the OH stretch, the direct OH bond fission is relatively slow (10 ps) and a considerable fraction of the radicals undergoes isomerization to the methoxy radical. The computed dissociation energies are: D(0)(CH(2)OH → CH(2)O + H) = 10,188 cm(-1), D(0)(CD(2)OH → CD(2)O + H) = 10,167 cm(-1), D(0)(CD(2)OH → CHDO + D) = 10,787 cm(-1). All are in excellent agreement with the experimental results. For CH(2)OH, the barriers for the direct OH bond fission and isomerization are: 14,205 and 13,839 cm(-1), respectively.  相似文献   

20.
The infrared spectra (3500-50 cm(-1)) of the gas and solid and the Raman spectra (3500-50 cm(-1)) of the liquid and solid have been recorded for 1-fluoro-2-butyne, CH3-C-triple bond-C-CH2F. Equilibrium geometries and energies have been determined by ab initio and hybrid DFT methods using a number of basis sets. A vibrational assignment is proposed based on the force constants, relative intensities, depolarization ratios from the ab initio and DFT calculations and on vibrational-rotational band contours obtained using the calculated equilibrium geometries. From calculated energies it is shown that the CH3 group exhibits almost completely free rotation which is in agreement with the observation of Coriolis sub-band structure in two of the degenerate methyl vibrations. The results are compared to the corresponding quantities for some similar molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号