首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The temperature dependence of the photoluminescence properties of a thin film of poly[2-methoxy-5-(2(')-ethylhexyloxy)-p-phenylene-vinylene], MEH-PPV, fabricated by spin coating, is analyzed. The evolution with temperature of the peak energy of the purely electronic transition, of the first vibronic band, of the effective conjugation length, and of the Huang-Rhys factors are discussed. The asymmetric character of the pure electronic transition peak and the contribution of the individual vibrational modes to the first vibronic band line shape are considered by a model developed by Cury et al. [J. Chem. Phys. 121, 3836 (2004)]. The temperature dependence of the Huang-Rhys factors of the main vibrational modes pertaining to the first vibronic band allows us to identify two competing vibrational modes. These results show that the electron coupling to different vibrational modes depends on temperature via reduction of thermal disorder.  相似文献   

2.
Vibronic couplings in C(60)(-) anion are discussed on the basis of the concept of the vibronic coupling density (VCD) [T. Sato, K. Tokunaga, and K. Tanaka, J. Chem. Phys. 124, 024314 (2006); K. Tokunaga, T. Sato, and K. Tanaka, J. Chem. Phys. 124, 154303 (2006); and T. Sato, K. Tokunaga, and K. Tanaka, J. Phys. Chem. A 112, 758 (2008)]. The VCD analysis clearly reveals that the coupling to the bending h(g)(2) mode is weaker than the coupling to the stretching h(g)(7) and h(g)(8) modes. For the vibronic couplings with the stretching modes, polarizations of the electron density difference on the bonds play a crucial role in the vibronic couplings. Such a polarized electron density difference appears as a result of the Coulomb interactions between the electrons in the lowest unoccupied molecular orbital and relevant doubly-occupied orbitals.  相似文献   

3.
The vibrational level splitting in the ground electronic state of carboxylic acid dimers mediated by the doubly hydrogen-bonded networks are investigated using pure and mixed dimers of benzoic acid with formic acid as molecular prototypes. Within the 0-2000-cm(-1) range, the frequencies for the fundamental and combination vibrations of the two dimers are experimentally measured by using dispersed fluorescence spectroscopy in a supersonic jet expansion. Density-functional-theory calculations predict that most of the dimer vibrations are essentially in-phase and out-of-phase combinations of the monomer modes, and many of such combinations show significantly large splitting in vibrational frequencies. The infrared spectrum of the jet-cooled benzoic acid dimer, reported recently by Bakker et al. [J. Chem. Phys. 119, 11180 (2003)], has been used along with the dispersed fluorescence spectra to analyze the coupled g-u vibrational levels. Assignments of the dispersed fluorescence spectra of the mixed dimer are suggested by comparing the vibronic features with those in the homodimer spectrum and the predictions of density-functional-theory calculation. The fluorescence spectra measured by excitations of the low-lying single vibronic levels of the mixed dimer reveal that the hydrogen-bond vibrations are extensively mixed with the ring modes in the S1 surface.  相似文献   

4.
The sensitivity of vibronic calculations to electronic structure methods and basis sets is explored and compared to accurate relative intensities of the vibrational bands of phenylacetylene in the S(1)(A(1)B(2)) ← S(0)(X(1)A(1)) transition. To provide a better measure of vibrational band intensities, the spectrum was recorded by cavity ringdown absorption spectroscopy up to energies of 2000 cm(-1) above the band origin in a slit jet sample. The sample rotational temperature was estimated to be about 30 K, but the vibrational temperature was higher, permitting the assignment of many vibrational hot bands. The vibronic structure of the electronic transition was simulated using a combination of time-dependent density functional theory (TD-DFT) electronic structure codes, Franck-Condon integral calculations, and a second-order vibronic model developed previously [Johnson, P. M.; Xu, H. F.; Sears, T. J. J. Chem. Phys. 2006, 125, 164331]. The density functional theory (DFT) functionals B3LYP, CAM-B3LYP, and LC-BLYP were explored. The long-range-corrected functionals, CAM-B3LYP and LC-BLYP, produced better values for the equilibrium geometry transition moment, but overemphasized the vibronic coupling for some normal modes, while B3LYP provided better-balanced vibronic coupling but a poor equilibrium transition moment. Enlarging the basis set made very little difference. The cavity ringdown measurements show that earlier intensities derived from resonance-enhanced multiphoton ionization (REMPI) spectra have relative intensity errors.  相似文献   

5.
It has recently been shown that there exists, in addition to the well-known nonrelativistic Renner-Teller coupling, a linear (that is, of the first order in the bending distortion) vibronic-coupling mechanism of relativistic (that is, spin-orbit) origin in 2II electronic states of linear molecules [L. V. Poluyanov and W. Domcke, Chem. Phys. 301, 111 (2004)]. The generic aspects of the relativistic linear vibronic-coupling mechanism have been analyzed in the present work by numerical calculations of the vibronic spectrum for appropriate models. The vibronic and spin-orbit parameters have been determined by accurate ab initio electronic-structure calculations for the X 2II states of a series of triatomic radicals and radical cations. It is shown for the example of GeCH that the relativistic linear vibronic-coupling mechanism provides a quantitative explanation of the pronounced perturbations in the vibronic spectrum of the X 2II state of GeCH, which previously have been termed "Sears resonances" [S.-G. He, H. Li, T. C. Smith, D. J. Clouthier, and A. J. Merer, J. Chem. Phys. 119, 10115 (2003)]. The X 2II vibronic spectra of the series BS2, CS2+, OCS+, and OBS illustrate the interplay of nonrelativistic and relativistic vibronic-coupling mechanisms in Renner-Teller systems.  相似文献   

6.
The complex vibronic spectra and the nonradiative decay dynamics of the cyclopropane radical cation (CP+) are simulated theoretically with the aid of a time-dependent wave packet propagation approach using the multireference time-dependent Hartree scheme. The theoretical results are compared with the experimental photoelectron spectrum of cyclopropane. The ground and first excited electronic states of CP+ are of X2E' and A2E' type, respectively. Each of these degenerate electronic states undergoes Jahn-Teller (JT) splitting when the radical cation is distorted along the degenerate vibrational modes of e' symmetry. The JT split components of these two electronic states can also undergo pseudo-Jahn-Teller (PJT)-type crossings via the vibrational modes of e', a1' and a2' symmetries. These lead to the possibility of multiple multidimensional conical intersections and highly nonadiabatic nuclear motions in these coupled manifolds of electronic states. In a previous publication [J. Phys. Chem. A 2004, 108, 2256], we investigated the JT interactions alone in the X2E' ground electronic manifold of CP+. In the present work, the JT interactions in the A2E' electronic manifold are treated, and our previous work is extended by considering the coupling between the X2E' and A2E' electronic states of CP+. The nuclear dynamics in this coupled manifold of two JT split doubly degenerate electronic states is simulated by considering fourteen active and most relevant vibrational degrees of freedom. The vibronic level spectra and the ultrafast nonradiative decay of the excited cationic states are examined and are related to the highly complex entanglement of electronic and nuclear degrees of freedom in this prototypical molecular system.  相似文献   

7.
Using a five-state, all-mode vibronic coupling model Hamiltonian derived in a previous publication [A. Markmann et al., J. Chem. Phys. 122, 144320 (2005)], we have calculated the photoelectron spectrum of the pentatetraene cation in the neighborhood of the B (2)E state, which can be represented with charge-localized components. To this end, quantum nuclear dynamics calculations were performed using the multiconfiguration time-dependent Hartree method, taking all 21 vibrational normal modes into account. Compared to experiment, the main features are reproduced but higher accuracy experiments are necessary to gauge the accuracy of the predictions for the vibronic progressions at the rising flank of the spectrum.  相似文献   

8.
Laser-induced fluorescence (LIF) excitation spectra of the B-X (2)A(") electronic transition of the CH(2)CHS radical, which is the sulfur analog of the vinoxy (CH(2)CHO) radical, were observed under room temperature and jet-cooled conditions. The LIF excitation spectra show very poor vibronic structures, since the fluorescence quantum yields of the upper vibronic levels are too small to detect fluorescence, except for the vibrationless level in the B state. A dispersed fluorescence spectrum of jet-cooled CH(2)CHS from the vibrationless level of the B state was also observed, and vibrational frequencies in the X state were determined. Precise rotational and spin-rotation constants in the ground vibronic level of the radical were determined from pure rotational spectroscopy using a Fourier-transform microwave (FTMW) spectrometer and a FTMW-millimeter wave double-resonance technique [Y. Sumiyoshi et al., J. Chem. Phys. 123, 054324 (2005)]. The rotationally resolved LIF excitation spectrum for the vibronic origin band of the jet-cooled CH(2)CHS radical was analyzed using the ground state molecular constants determined from pure rotational spectroscopy. Determined molecular constants for the upper and lower electronic states agree well with results of ab initio calculations.  相似文献   

9.
10.
The quasiclassical absorption spectrum of the water dimer in the A band was calculated taking into account motion in all degrees of freedom of the system. The ab initio excited state potentials employed were interpolated by the modified Shepard interpolation method using QMRCI energies and state-averaged MCSCF gradients and Hessians. The ground state vibrational wavefunction was variationally calculated using an adiabatic separation between the high and low frequency normal modes of the system. The calculated spectrum of water dimer shows a clear blueshift with respect to the monomer, but also a small red tail, in agreement with the prediction by Harvey et al. [J. Chem. Phys. 109, 8747 (1998)]. Previous three-dimensional model studies of the photodissociation of the water dimer by Valenzano et al. [J. Chem. Phys. 123, 034303 (2005)] did not show this red tail. A thorough analysis of the dependence of the spectrum on the modes coupled explicitly in the calculation of the spectrum shows that the red tail is due to coupling between the intramolecular stretch vibrations on different monomers.  相似文献   

11.
We have previously demonstrated that the dipole moment of the exchange hole can be used to derive intermolecular C(6) dispersion coefficients [J. Chem. Phys. 122, 154104 (2005)]. This was subsequently the basis for a novel post-Hartree-Fock model of intermolecular interactions [J. Chem. Phys. 123, 024101 (2005)]. In the present work, the model is extended to include higher-order dispersion coefficients C(8) and C(10). The extended model performs very well for prediction of intermonomer separations and binding energies of 45 van der Waals complexes. In particular, it performs twice as well as basis-set extrapolated MP2 theory for dispersion-bound complexes, with minimal computational cost.  相似文献   

12.
We report quantum diffusion Monte Carlo (DMC) and variational calculations in full dimensionality for selected vibrational states of H(5)O(2) (+) using a new ab initio potential energy surface [X. Huang, B. Braams, and J. M. Bowman, J. Chem. Phys. 122, 044308 (2005)]. The energy and properties of the zero-point state are focused on in the rigorous DMC calculations. OH-stretch fundamentals are also calculated using "fixed-node" DMC calculations and variationally using two versions of the code MULTIMODE. These results are compared with infrared multiphoton dissociation measurements of Yeh et al. [L. I. Yeh, M. Okumura, J. D. Myers, J. M. Price, and Y. T. Lee, J. Chem. Phys. 91, 7319 (1989)]. Some preliminary results for the energies of several modes of the shared hydrogen are also reported.  相似文献   

13.
We apply the combined electronic structure/molecular dynamics approach of Corcelli, Lawrence, and Skinner [J. Chem. Phys. 120, 8107 (2004)] to the fluctuating charge (SPC-FQ) model of liquid water developed by Rick, Stuart, and Berne [J. Chem. Phys. 101, 6141 (1994)]. For HOD in H(2)O the time scale for the long-time decay of the OD stretch frequency time-correlation function, which corresponds to the time scale for hydrogen-bond rearrangement in the liquid, is about 1.5 ps. This result is significantly longer than the 0.9 ps decay previously calculated for the nonpolarizable SPC/E water model. Our results for the SPC-FQ model are in better agreement with recent vibrational echo experiments.  相似文献   

14.
Four internal-rotation/vibration bands of the Ne-D(2)O complex have been measured in the v(2) bend region of D(2)O using a tunable infrared diode laser spectrometer to probe a slit supersonic expansion. Three ortho bands are excited from the ground state Σ(0(00)) to the Σ and Π(1(11), υ(2) = 1) internal rotor states and the n = 1, Σ(0(00), υ(2) = 1) stretching-internal rotor combination state. Strong perturbations between the excited vibrational states are evident. The observed spectra are analyzed separately with a three-state J-dependent Coriolis plus J-independent angular-radial coupling model [M. J. Weida and D. J. Nesbitt, J. Chem. Phys. 106, 3078 (1997)] and a three-state Coriolis coupling model [R. C. Cohen and R. J. Saykally, J. Chem. Phys. 95, 7891 (1991)]. The former model works more successfully than the latter. Molecular constants for the ground and excited vibrational states of ortho (20)Ne-D(2)O isotopomer as well as the Coriolis and angular-radial coupling constants are determined accurately. The van der Waals stretching frequency is estimated to be ν(s) = 24.85 cm(-1) in the ground state and decreases to about 20.8 cm(-1) upon vibrational excitation of the D(2)O bend.  相似文献   

15.
In this paper, we present simulations of the decay of quantum coherence between vibrational states of I(2) in its ground (X) electronic state embedded in a cryogenic Kr matrix. We employ a numerical method based on the semiclassical limit of the quantum Liouville equation, which allows the simulation of the evolution and decay of quantum vibrational coherence using classical trajectories and ensemble averaging. The vibrational level-dependent interaction of the I(2)(X) oscillator with the rare-gas environment is modeled using a recently developed method for constructing state-dependent many-body potentials for quantum vibrations in a many-body classical environment [J. M. Riga, E. Fredj, and C. C. Martens, J. Chem. Phys. 122, 174107 (2005)]. The vibrational dephasing rates gamma(0n) for coherences prepared between the ground vibrational state mid R:0 and excited vibrational state mid R:n are calculated as a function of n and lattice temperature T. Excellent agreement with recent experiments performed by Karavitis et al. [Phys. Chem. Chem. Phys. 7, 791 (2005)] is obtained.  相似文献   

16.
We have applied time dependent density functional theory to study excited state structures of the tetroxo d(0) transition metal complexes MnO(4)(-), TcO(4)(-), RuO(4), and OsO(4). The excited state geometry optimization was based on a newly implemented scheme [Seth et al. Theor. Chem. Acc. 2011, 129, 331]. The first excited state has a C(3v) geometry for all investigated complexes and is due to a "charge transfer" transition from the oxygen based HOMO to the metal based LUMO. The second excited state can uniformly be characterized by "charge transfer" from the oxygen HOMO-1 to the metal LUMO with a D(2d) geometry for TcO(4)(-), RuO(4), and OsO(4) and two C(2v) geometries for MnO(4)(-). It is finally found that the third excited state of MnO(4)(-) representing the HOMO to metal based LUMO+1 orbital transition has a D(2d) geometry. On the basis of the calculated excited state structures and vibrational modes, the Franck-Condon method was used to simulate the vibronic structure of the absorption spectra for the tetroxo d(0) transition metal complexes. The Franck-Condon scheme seems to reproduce the salient features of the experimental spectra as well as the simulated vibronic structure for MnO(4)(-) generated from an alternative scheme [Neugebauer J. J. Phys. Chem. A 2005, 109, 1168] that does not apply the Franck-Condon approximation.  相似文献   

17.
We present a new parametrization of the flexible, polarizable Thole-type model for water [J. Chem. Phys. 116, 5115 (2002); J. Phys. Chem. A 110, 4100 (2006)], with emphasis in describing the vibrational spectra of both water clusters and liquid water. The new model is able to produce results of similar quality with the previous versions for the structures and energetics of water clusters as well as structural and thermodynamic properties of liquid water evaluated with classical and converged quantum statistical mechanical atomistic simulations. At the same time it yields accurate redshifts for the OH vibrational stretches of both water clusters and liquid water.  相似文献   

18.
A hierarchical electron-phonon coupling model is applied to describe the ultrafast decay of a photogenerated exciton at a donor-acceptor polymer heterojunction, via a vibronic coupling mechanism by which a charge-localized interfacial state is created. Expanding upon an earlier Communication [H. Tamura et al., J. Chem. Phys. 126, 021103 (2007)], we present a quantum dynamical analysis based on a two-state linear vibronic coupling model, which accounts for a two-band phonon bath including high-frequency C[Double Bond]C stretch modes and low-frequency ring torsional modes. Building upon this model, an analysis in terms of a hierarchical chain of effective modes is carried out, whose construction is detailed in the present paper. Truncation of this chain at the order n (i.e., 3n+3 modes) conserves the Hamiltonian moments (cumulants) up to the (2n+3)rd order. The effective-mode analysis highlights (i) the dominance of the high-frequency modes in the coupling to the electronic subsystem and (ii) the key role of the low-frequency modes in the intramolecular vibrational redistribution process that is essential in mediating the decay to the charge-localized state. Due to this dynamical interplay, the effective-mode hierarchy has to be carried beyond the first order in order to obtain a qualitatively correct picture of the nonadiabatic process. A reduced model of the dynamics, including a Markovian closure of the hierarchy, is presented. Dynamical calculations were carried out using the multiconfiguration time-dependent Hartree method.  相似文献   

19.
Restricted-spin coupled-cluster single-double plus perturbative triple excitation [RCCSD(T)] potential energy functions (PEFs) were calculated for the X (2)A" and A (2)A' states of HPCl employing the augmented correlation-consistent polarized-valence-quadruple-zeta (aug-cc-pVQZ) basis set. Further geometry optimization calculations were carried out on both electronic states of HPCl at the RCCSD(T) level with all electron and quasirelativistic effective core potential basis sets of better than the aug-cc-pVQZ quality, and also including some core electrons, in order to obtain more reliable geometrical parameters and relative electronic energy of the two states. Anharmonic vibrational wave functions of the two states of HPCl and DPCl, and Franck-Condon (FC) factors of the A (2)A'-X (2)A" transition were computed employing the RCCSD(T)/aug-cc-pVQZ PEFs. Calculated FC factors with allowance for Duschinsky rotation and anharmonicity were used to simulate the single-vibronic-level (SVL) emission spectra of HPCl and DPCl reported by Brandon et al. [J. Chem. Phys. 119, 2037 (2003)] and the chemiluminescence spectrum reported by Bramwell et al. [Chem. Phys. Lett. 331, 483 (2000)]. Comparison between simulated and observed SVL emission spectra gives the experimentally derived equilibrium geometry of the A (2)A' state of HPCl of r(e)(PCl) = 2.0035 +/- 0.0015 A, theta(e) = 116.08 +/- 0.60 degrees, and r(e)(HP) = 1.4063+/-0.0015 A via the iterative Franck-Condon analysis procedure. Comparison between simulated and observed chemiluminescence spectra confirms that the vibrational population distribution of the A (2)A' state of HPCl is non-Boltzmann, as proposed by Baraille et al. [Chem. Phys. 289, 263 (2003)].  相似文献   

20.
Raman spectra of the thiomolybdate ion in the compounds [Cu.NH4][MoS4] and X2[MoS4], where X=NH4+, Rb+ or Cs+, are reported and used to confirm the hypothesis presented in an earlier paper [J. Chem. Phys. 94 (1991) 5946], that there is solid state induced vibrational coupling between the nu1 and nu3 modes of tetrahedral ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号