首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reaction of the ruthenium half sandwich compound RuCl(eta(5)-C(5)H(5))(PPh(3))(2) with the uracil (Ur) substituted alkyne HC[triple bond, length as m-dash]CUr in the presence of halide scavengers NH(4)X (X = PF(6), BF(4), OTf) results in the formation of the vinylidene complexes [Ru([double bond, length as m-dash]C[double bond, length as m-dash]CHUr)(eta(5)-C(5)H(5))(PPh(3))(2)][X] which crystallize in the hexagonal space group P6(3)/m. The hexagonal symmetry inherent to the system is due to the formation of a hydrogen bonded array mediated by the two sets of donor-acceptor units on the uracil, resulting in the formation of a cyclic "rosette" containing six ruthenium cations. In solution the (1)H and (31)P{(1)H} NMR spectra of the vinylidene complexes are both concentration and temperature dependent, in accord with the presence of monomer-dimer equilibria in which the rate of rotation of the vinylidene group is fast on the NMR timescale in the monomeric species, but slow in the dimers. The isoelectronic molybdenum-containing vinylidene complex [Mo(eta(7)-C(7)H(7))(dppe)([double bond, length as m-dash]C[double bond, length as m-dash]CHUr)][BF(4)] (dppe = 1,2-bis(diphenylphosphino)ethane) has also been prepared, but forms symmetric dimers in the solid state.  相似文献   

2.
Reactions of the anionic gallium(I) heterocycle salt, [K(tmeda)][Ga(DAB)] (DAB = {N(Dip)C(H)}2; Dip = C6H3Pri2-2,6), with a series of groups 6-9 and 11 metal halide complexes have given rise to the metal gallyl complexes, [CpCr(IMes){Ga(DAB)}] (IMes = :C{(Mes)NC(H)}2; Mes = mesityl), [M(tmeda){Ga(DAB)}2] (M = Mn, Fe or Co) and [Cu(dppe){Ga(DAB)}] (dppe = 1,2-bis(diphenylphosphino)ethane). The majority of the complexes have been crystallographically characterized. The reactivity of the previously reported copper(I) gallyl complex, [(IPr)Cu{Ga(DAB)}] (IPr = :C{(Dip)NC(H)}2), towards a variety of unsaturated substrates has been explored. Three crystallographically characterized complexes have arisen from this phase of the study, viz. [(IPr)CuCCPh], [(IPr)Cu{Ga(DAB)}(CNBut)] and [(IPr)Cu{κ1-OC(O)C(CNHDip)(NHDip)}]. The results of these investigations show that the reactivity of [(IPr)Cu{Ga(DAB)}] is significantly different to that of related copper boryl complexes.  相似文献   

3.
This paper describes a tandem strategy to synthesize a series of new Fischer carbene complexes [(CO)(4)M[double bond, length as m-dash]C[N-(CH(2))(4)-]CH[double bond, length as m-dash]C(NRR')(SR'); M = Cr, W; R = Ar, R' = Me, -(CH(2))(2)-] with a thioimide or thiazoline fragment, in which the sulfur or nitrogen atom is coordinated to a metal center, depending on the nature of alkylating groups included as R'. We have trapped by protonation the proposed intermediate as the thioamide 12 [(CO)(5)W[double bond, length as m-dash]C[N-(CH(2))(4)-]CH(2)C(S)NHPh], which reveals the pathway of this reaction.  相似文献   

4.
Lithium and nickel complexes bearing quinoline-based ligands have been synthesized and characterized. Reaction of 8-azidoquinoline with Ph(2)PNHR (R = p-MeC(6)H(4), Bu(t)) affords N-(8-quinolyl)iminophosphoranes RNHP(Ph(2))[double bond, length as m-dash]N(8-C(9)H(6)N) (1a, R = p-MeC(6)H(4); 1b, R = Bu(t). C(9)H(6)N = quinolyl)). Reaction of 1a with (DME)NiCl(2) generates a nickel complex [NiCl(2){N(8-C(9)H(6)N)[double bond, length as m-dash]P(Ph(2))NH(p-MeC(6)H(4))}] (2a). Treatment of 1b with (DME)NiCl(2) and following with NaH produces [NiCl{(1,2-C(6)H(4))P(Ph)(NHBu(t))[double bond, length as m-dash]N(8-C(9)H(6)N)}] (4). Complex 4 was also obtained by reaction of (DME)NiCl(2) with [Li{(1,2-C(6)H(4))P(Ph)(NHBu(t))[double bond, length as m-dash]N(8-C(9)H(6)N)}] (5) prepared through lithiation of 1b. Reaction of 2-PyCH(2)P(Ph(2))[double bond, length as m-dash]N(8-C(9)H(6)N) (6, Py = pyridyl) and PhN[double bond, length as m-dash]C(Ph)CH(2)P(Ph(2))[double bond, length as m-dash]N(8-C(9)H(6)N) (8), respectively, with (DME)NiCl(2) yields two five-coordinate N,N,N-chelate nickel complexes, [NiCl(2){2-PyCH(2)P(Ph(2))[double bond, length as m-dash]N(8-C(9)H(6)N)}] (7) and [NiCl(2){PhN[double bond, length as m-dash]C(Ph)CH(2)P(Ph(2))[double bond, length as m-dash]N(8-C(9)H(6)N)}] (9). Similar reaction between Ph(2)PCH(2)P(Ph(2))[double bond, length as m-dash]N(8-C(9)H(6)N) (10) and (DME)NiCl(2) results in five-coordinate N,N,P-chelate nickel complex [NiCl(2){Ph(2)PCH(2)P(Ph(2))[double bond, length as m-dash]N(8-C(9)H(6)N)}] (11). Treatment of [(8-C(9)H(6)N)N[double bond, length as m-dash]P(Ph(2))](2)CH(2) (12) [prepared from (Ph(2)P)(2)CH(2) and 2 equiv. of 8-azidoquinoline] with LiBu(n) and (DME)NiCl(2) successively affords [NiCl{(8-C(9)H(6)N)NP(Ph(2))}(2)CH] (13). The new compounds were characterized by (1)H, (13)C and (31)P NMR spectroscopy (for the diamagnetic compounds), IR spectroscopy (for the nickel complexes) and elemental analysis. Complexes 2a, 4, 7, 9, 11 and 13 were also characterized by single-crystal X-ray diffraction techniques. The nickel complexes were evaluated for the catalysis in the cross-coupling reactions of arylzinc reagents with aryl chlorides and aryltrimethylammonium salts. Complex 7 exhibits the highest activity among the complexes in catalyzing the reactions of arylzinc reagents with either aryl chlorides or aryltrimethylammonium bromides.  相似文献   

5.
The reactivity of complex [Ru(eta(6)-p-cymene)(kappa(3)P,N,O-Ph(2)PCH(2)P{[double bond, length as m-dash]NP([double bond, length as m-dash]O)(OEt)(2)}Ph(2))][SbF(6)](2) towards a variety of mono- and bidentate neutral ligands has been studied, allowing the high-yield synthesis of the novel half-sandwich Ru(ii) derivatives [Ru(eta(6)-p-cymene)(L)(kappa(2)P,O-Ph(2)PCH(2)P{[double bond, length as m-dash]NP([double bond, length as m-dash]O)(OEt)(2)}Ph(2))][SbF(6)](2) (L = N[triple bond, length as m-dash]CMe , N[triple bond, length as m-dash]CEt , PMe(3), PMe(2)Ph , PMePh(2), PPh(3), P(OMe)(3), P(OEt)(3), P(OPh)(3), py , kappa(1)P-dppm , kappa(1)P-dppe ), as well as the octahedral species [Ru(Ninsertion markN)(2)(kappa(2)P,O-Ph(2)PCH(2)P{[double bond, length as m-dash]NP([double bond, length as m-dash]O)(OEt)(2)}Ph(2))][SbF(6)](2) (Ninsertion markN = bipy , phen ). Deprotonation of complexes ,, upon treatment with an excess of NaOH in CH(2)Cl(2), generates the monocationic derivatives [Ru(Ninsertion markN)(2)(kappa(2)P,N-Ph(2)PC(H)[double bond, length as m-dash]P{NP([double bond, length as m-dash]O)(OEt)(2)}Ph(2))][Cl] (Ninsertion markN = bipy , phen ) in which the methanide anion adopts an unprecedented kappa(2)P,N bidentate coordination mode. The structures of compounds , and have been determined by single-crystal X-ray diffraction methods.  相似文献   

6.
A series of homoleptic and heteroleptic platinum(ii) complexes [Pt(C[triple bond, length as m-dash]CFc)(2)(L-L)] (L-L = COD , 1,1'-bis(diphenylphosphino)ferrocene (dppf) ), Q(2)[cis/trans-Pt(C(6)F(5))(2)(C[triple bond, length as m-dash]CFc)(2)] (cis, Q = PMePh(3), ; trans, Q = NBu(4), ), (NBu(4))[Pt(bzq)(C[triple bond, length as m-dash]CFc)(2)] (Hbzq = 7,8-benzoquinoline) and (NBu(4))(2)[Pt(C[triple bond, length as m-dash]CFc)(4)] has been synthesized and characterized spectroscopically and the structures of .2CHCl(3), and .2H(2)O.2CH(2)Cl(2) confirmed by single-crystal X-ray studies. The anion of complex , shows strong O-Hpi(C[triple bond, length as m-dash]C) interactions and weaker C-Clpi(C[triple bond, length as m-dash]C) contacts between the protons of two water and two CH(2)Cl(2) molecules and the C(alpha)[triple bond, length as m-dash]C(beta) of mutually cis alkynyl groups. In this complex the presence of additional O-HH-C(Cp) and C-ClH-C(Cp) contacts gives rise to an extended bidimensional network. The optical and electrochemical properties of all derivatives have been examined. It is remarkable that for complexes and a facile oxidatively induced coupling, giving rise to 1,4-diferrocenylbutadiyne, is observed, this also having been proven by chemical oxidation.  相似文献   

7.
The ambient temperature reaction of the N-heterocyclic carbenes (NHCs) 1,3-dimesitylimidazol-2-ylidene (IMes) and 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IDipp) with the triruthenium cluster [Ru(3)(CO)(12)], in a 3 : 1 stoichiometric ratio, results in homolytic cleavage of the cluster to quantitatively afford the complexes [Ru(CO)(4)(NHC)] (; NHC = IMes, ; NHC = IDipp). Reaction of the 2-thione or hydrochloride precursors to IMes, i.e. S[double bond, length as m-dash]IMes and IMes.HCl, with the same triruthenium cluster affords the complexes [Ru(4)(mu(4)-S)(2)(CO)(9)(IMes)(2)] () and [Ru(4)(mu(4)-S)(CO)(10)(IMes)(2)] () (3 : 1 and 2 : 1 reaction), and [{Ru(mu-Cl)(CO)(2)(IMes)}(2)] () (3 : 1 reaction) respectively. By contrast, the complex [Ru(3)(mu(3)-S)(2)(CO)(7)(IMeMe)(2)] (), where IMeMe is 1,3,4,5-tetramethylimidazol-2-ylidene, is the sole product of the 2 : 1 stoichiometric reaction of S[double bond, length as m-dash]IMeMe with [Ru(3)(CO)(12)]. Compounds -, and have been structurally characterised by single crystal X-ray diffraction.  相似文献   

8.
Acid-catalysed hydrolysis of [CH2[(Sn(Ph2)CH2Si(OiPr)Me2]2] followed by subsequent reaction with mercuric chloride in acetone afforded the novel silicon- and tin-containing eight-membered ring [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] in good yield, the crystal structure of which is reported. 119Sn NMR and X-ray studies indicate that [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] acts as a bidentate Lewis acid towards chloride ions exclusively forming the 1:1 complex [(Ph3P)2N]+[cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2OCl]- upon addition of [(Ph3P)2N]+Cl- . Also reported are the synthesis and structure of [K(dibenzo[18]crown-6)]+[cyclo-CH2(Sn(Cl2)CH2Si(Me2)]2OF]-, the first completely characterised organostannate with a C2SnCl2F- substituent pattern. No ring-opening polymerisation could be achieved for [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] or for its perphenylated derivative [cyclo-CH2[Sn(Ph2)CH2Si(Me2)]2O]. The reaction of [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] with Me3O+BF4- gave the tin-containing fluorosilane [CH2[Sn(Cl2)CH2Si(F)Me2]2], in which the Si-F bond is activated by intermolecular Si-F...Sn interactions in the solid state.  相似文献   

9.
Two novel ruthenium-based olefin metathesis catalysts, H(2)ITap(PCy(3))Cl(2)Ru[double bond, length as m-dash]CH-Ph and H(2)ITapCl(2)Ru[double bond, length as m-dash]CH-(C(6)H(4)-O-iPr) (H(2)ITap = 1,3-bis(2',6'-dimethyl-4'-dimethylaminophenyl)-4,5-dihydroimidazol-2-ylidene), were synthesized bearing a pH-responsive NHC ligand with two aromatic NMe(2) groups. The crystal structures of complexes and were determined via X-ray crystallography. Both catalysts perform ring opening metathesis polymerization (ROMP) of cyclooctene (COE) at faster rates than their commercially available counterparts H(2)IMes(PCy(3))Cl(2)Ru[double bond, length as m-dash]CH-Ph and H(2)IMesCl(2)Ru[double bond, length as m-dash]CH-(C(6)H(4)-O-iPr) (H(2)IMes = 1,3-bis(2',4',6'-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene) and perform at similar rates during ring closing metathesis (RCM) of diethyldiallylmalonate (DEDAM). Upon addition of 2 equiv. of HCl, catalyst is converted into a mixture of several mono and diprotonated Ru-carbene species 12' which are soluble in methanol but degrade within a few hours at room temperature. Catalyst can be protonated with 2 equiv. of HCl and the resulting complex is moderately water-soluble. The complex is stable in aqueous solution in air for >4 h, but over prolonged periods of time shows degradation in acidic media due to hydrolysis of the NHC-Ru bond. Catalysts and perform RCM of diallylmalonic acid in acidic protic media with only moderate activity at 50 degrees C and do not produce polymer in the ROMP of cationic 7-oxanorbornene derivative under the same conditions. Catalyst was used for Ru-seperation studies when RCM of DEDAM or 3,3-diallypentadione (DAP) was conducted in low-polar organic solution and the Ru-species was subsequently precipitated by addition of strong acid. The Ru-species were removed by (1) filtration and (2) filtration and subsequent extraction with water. The residual Ru-levels could be reduced to as far as 11 ppm (method 2) and 24 ppm (method 1) without the use of chromatography or other scavenging methods.  相似文献   

10.
Seven novel R2Sn(IV)-oxydiacetate (oda) and -iminodiacetate (ida) compounds of the form [R2Sn(oda)(H2O)]2 (R = Me, nBu, and Ph) (1-3), [(R2SnCl)2(oda)(H2O)2]n (R = Et, iBu, and tBu) (4-6), and [Me2Sn(ida)(MeOH)]2 (7) have been synthesized and characterized by IR, 1H, 13C, and 119Sn NMR (solution), solid-state 119Sn CPMAS NMR, and (119m)Sn M?ssbauer spectroscopy. The crystal structure of [Me2Sn(oda)(H2O)]2, 1, shows it to be dinuclear (centrosymmetric), with two seven-coordinated tin atoms, bridged by one arm of the carboxylate group from each oda. By contrast, the crystal structure of [(Et2SnCl)2(oda)(H2O)2]n, 4, comprises a zigzag polymeric assembly containing a pair of different alternating subunits, {Et2SnCl(H2O)} and {Et2SnCl(H2O)(oda)}, which are connected by way of bridging oda carboxylates, thus giving seven-coordinate tin centers in both components. Finally, the structure of [Me2Sn(ida)(MeOH)]2, 7, also centrosymmetric dinuclear, is comprised of a pair of mononuclear units with seven-coordinate tin. The 119Sn solid-state CPMAS NMR and (119m)Sn Mossbauer suggest the presence of seven-coordinate Sn metal atoms in some derivatives and the existence of two different tin sites in the [(R2SnCl)2(oda)(H2O)2]n compounds.  相似文献   

11.
Polyynic structures in fuel-rich low-pressure flames are observed using VUV photoionization molecular-beam mass spectrometry. High-level ab initio calculations of ionization energies for C2nH2 (n=1-5) and partially hydrogenated CnH4 (n=7-8) polyynes are compared with photoionization efficiency measurements in flames fuelled by allene, propyne, and cyclopentene. C2nH2 (n=1-5) intermediates are unambiguously identified, while HC[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-CH=C=CH2, HC[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-CH=CH2 (vinyltriacetylene) and HC[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-CH[double bond, length as m-dash]CH-C[triple bond, length as m-dash]CH are likely to contribute to the C7H4 and C8H4 signals. Mole fraction profiles as a function of distance from the burner are presented. C7H4 and C8H4 isomers are likely to be formed by reactions of C2H and C4H radicals but other plausible formation pathways are also discussed. Heats of formation and ionization energies of several combustion intermediates have been determined for the first time.  相似文献   

12.
Reactions of N,N,N-tridentate quinolinyl anilido-imine ligands with AlMe(3) afford mononuclear aluminum complexes {κ(3)-[{2-[ArN[double bond, length as m-dash]C(H)]C(6)H(4)}N(8-C(9)H(6)N)]}AlMe(2) (Ar = 2,6-Me(2)C(6)H(3) (1a), 2,6-Et(2)C(6)H(3) (1b), 2,6-(i)Pr(2)C(6)H(3) (1c)) or dinuclear complexes AlMe(3){κ(1)-[{2-[ArN[double bond, length as m-dash]C(H)C(6)H(4)]N(8-C(9)H(6)N)}-κ(2)]AlMe(2) (R = 2,6-Me(2)C(6)H(3) (2a), 2,6-Et(2)C(6)H(3) (2b), 2,6-(i)Pr(2)C(6)H(3) (2c)) depending on the ratios of reactants used. Similar reactions of ZnEt(2) with these ligands give the monoligated ethyl zinc complexes {κ(3)-[{2-[ArN[double bond, length as m-dash]C(H)]C(6)H(4)}N(8-C(9)H(6)N)]}ZnEt (Ar = 2,6-Me(2)C(6)H(3) (3a), 2,6-Et(2)C(6)H(3) (3b), 2,6-(i)Pr(2)C(6)H(3) (3c)) or bisligated complexes {κ(3)-[{2-[ArN[double bond, length as m-dash]C(H)]C(6)H(4)}N(8-C(9)H(6)N)]}Zn{κ(2)-[{2-[ArN[double bond, length as m-dash]C(H)]C(6)H(4)}N(8-C(9)H(6)N)]} (Ar = 2,6-Me(2)C(6)H(3) (4a), 2,6-Et(2)C(6)H(3) (4b), 2,6-(i)Pr(2)C(6)H(3) (4c)). These complexes were well characterized by NMR and the structures of 1a, 2a, 2c, 3b and 4c were confirmed by X-ray diffraction analysis. The aluminum and zinc complexes were tested to initiate lactide polymerization in which the zinc complexes show moderate to high activities in the presence of benzyl alcohol.  相似文献   

13.
Reaction of the d9-d9 Ni(I) monochloride dimer, [(IPr)Ni(mu-Cl)]2 (1), with NaN(SiMe3)2 and LiNHAr (Ar = 2,6-diisopropylphenyl) gives the novel monomeric, 2-coordinate Ni(I) complexes (IPr)Ni{N(SiMe3)2} (2) and (IPr)Ni(NHAr) (3). Reaction of 2 with Cp2Fe+ results in its 1-e- oxidation followed by beta-Me elimination to give a base-stabilized iminosilane complex [(IPr)Ni(CH3){kappa1-N(SiMe3)=SiMe2.Et2O}][BArF4] (6). Oxidation of 3 gives [(IPr)Ni(eta3-NHAr)(THF)][BArF4] (4), which upon loss of THF affords dimeric [(IPr)Ni(N,eta3:NHC6iPr2H3)]2[BArF4]2 (5).  相似文献   

14.
There has been much interest in the synthesis and properties of doubly bonded systems between heavier Group 15 elements, i. e. heavier analogues of azo-compounds (dipnictenes), from the viewpoints of fundamental and material chemistry. Although such double-bond compounds between heavier main group elements are known to be highly reactive, too much so to be isolated as stable compounds, a number of reports on the synthesis of kinetically stabilized diphosphenes (RP[double bond, length as m-dash]PR), diarsenes (RAs[double bond, length as m-dash]AsR), and phosphaarsenes (RP[double bond, length as m-dash]AsR) bearing bulky substituent have been published since 1980. We have also succeeded in the synthesis of the first stable distibene (RSb[double bond, length as m-dash]SbR) and dibismuthene (RBi[double bond, length as m-dash]BiR) by taking advantage of efficient steric protection groups, 2,4,6-tris[bis(trimethylsilyl)methyl]phenyl (Tbt) and 2,6-bis[bis(trimethylsilyl)methyl]-4-[tris(trimethylsilyl)methyl]phenyl (Bbt), and revealed their structures and properties systematically. Thus, the doubly bonded compounds between heavier Group 15 elements are no longer imaginary species but are those with real existence which are stable, even in the case of the heaviest non-radioactive element bismuth, when they are appropriately protected by bulky substituents. This Perspective describes our research on the chemistry of kinetically stabilized double-bond compounds between heavier Group 15 elements.  相似文献   

15.
The alkynyl(vinylidene)rhodium(I) complexes trans-[Rh(C[triple bond, length as m-dash]CR)(=C=CHR)(PiPr3)2] 2, 5, 6 react with CO by migratory insertion to give stereoselectively the butenynyl compounds trans-[Rh{eta1-(Z)-C(=CHR)C[triple bond, length as m-dash]CR}(CO)(PiPr3)2](Z)-7-9, of which (Z)-7 (R=Ph) and (Z)-8 (R=tBu) rearrange upon heating or UV irradiation to the (E) isomers. Similarly, trans-[Rh{eta1-C(=CH2)C[triple bond, length as m-dash]CPh}(CO)(PiPr3)2] 12 and trans-[Rh{eta1-(Z)-C(=CHCO2Me)C[triple bond, length as m-dash]CR}(CO)(PiPr3)2](Z)-15, (Z)-16 have been prepared. At room temperature, the corresponding "non-substituted" derivative trans-[Rh{eta1-C(=CH2)C[triple bond, length as m-dash]CH}(CO)(PiPr3)2] 18 is in equilibrium with the butatrienyl isomer trans-[Rh(eta1-CH=]C=C=CH2)(CO)(PiPr3)2] 19 that rearranges photochemically to the alkynyl complex trans-[Rh(C[triple bond, length as m-dash]CCH=CH2)(CO)(PiPr3)2] 20. Reactions of (Z)-7, (E)-7, (Z)-8 and (E)-8 with carboxylic acids R'CO2H (R'=CH3, CF3) yield either the butenyne (Z)- and/or (E)-RC[triple bond, length as m-dash]CCH=CHR or a mixture of the butenyne and the isomeric butatriene, the ratio of which depends on both R and R'. Treatment of 2 (R=Ph) with HCl at -40 degrees C affords five-coordinate [RhCl(C[triple bond, length as m-dash]CPh){(Z)-CH=CHPh}(PiPr3)2] 23, which at room temperature reacts by C-C coupling to give trans-[RhCl{eta2-(Z)-PhC[triple bond, length as m-dash]CCH=CHPh}(PiPr3)2](Z)-21. The related compound trans-[RhCl(eta2-HC[triple bond, length as m-dash]CCH=CH2)(PiPr3)2] 27, prepared from trans-[Rh(C[triple bond, length as m-dash]CH)(=C=CH2)(PiPr3)2] 17 and HCl, rearranges to the vinylvinylidene isomer trans-[RhCl(=C=CHCH=CH2)(PiPr3)2] 28. While stepwise reaction of 2with CF3CO2H yields, via alkynyl(vinyl)rhodium(III) intermediates (Z)-29 and (E)-29, the alkyne complexes trans-[Rh(kappa1-O2CCF3)(eta2-PhC[triple bond, length as m-dash]CCH=CHPh)(PiPr3)2](Z)-30 and (E)-30, from 2 and CH3CO2H the acetato derivative [Rh(kappa2-O2CCH3)(PiPr3)2] 33 and (Z)-PhC[triple bond, length as m-dash]CCH=]CHPh are obtained. From 6 (R=CO2Me) and HCl or HC[triple bond, length as m-dash]CCO2Me the chelate complexes [RhX(C[triple bond, length as m-dash]CCO2Me){kappa2(C,O)-CH=CHC(OMe)=O}(PiPr3)2] 34 (X=Cl) and 35 (X=C[triple bond, length as m-dash]CCO2Me) have been prepared. In contrast to the reactions of [Rh(kappa2-O2CCH3)(C[triple bond, length as m-dash]CE)(CH=CHE)(PiPr3)2] 37(E=CO2Me) with chloride sources which give, via intramolecular C-C coupling, four-coordinate trans-[RhCl{eta2-(E)-EC[triple bond, length as m-dash]CCH=CHE}(PiPr3)2](E)-36, treatment of 37with HC[triple bond, length as m-dash]CE affords, via insertion of the alkyne into the rhodium-vinyl bond, six-coordinate [Rh(kappa2-O2CCH3)(C[triple bond, length as m-dash]CE){eta1-(E,E)-C(=CHE)CH=CHE}(PiPr3)2] 38. The latter reacts with MgCl2 to yield trans-[RhCl{eta2-(E,E)-EC[triple bond, length as m-dash]CC(=CHE)CH=CHE}(PiPr3)2] 39, which, in the presence of CO, generates the substituted hexadienyne (E,E)-EC[triple bond, length as m-dash]CC(=CHE)CH=CHE 40.  相似文献   

16.
Monomeric copper(I) alkyl complexes that possess the N-heterocyclic carbene (NHC) ligands IPr, SIPr, and IMes [IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene, SIPr = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene, IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene] react with amines or alcohols to release alkane and form the corresponding monomeric copper(I) amido, alkoxide, or aryloxide complexes. Thermal decomposition reactions of (NHC)Cu(I) methyl complexes at temperatures between 100 and 130 degrees C produce methane, ethane, and ethylene. The reactions of (NHC)Cu(NHPh) complexes with bromoethane reveal increasing nucleophilic reactivity at the anilido ligand in the order (SIPr)Cu(NHPh) < (IPr)Cu(NHPh) < (IMes)Cu(NHPh) < (dtbpe)Cu(NHPh) [dtbpe = 1,2-bis(di-tert-butylphosphino)ethane]. DFT calculations suggest that the HOMO for the series of Cu anilido complexes is localized primarily on the amido nitrogen with some ppi(anilido)-dpi(Cu) pi-character. [(IPr)Cu(mu-H)]2 and (IPr)Cu(Ph) react with aniline to quantitatively produce (IPr)Cu(NHPh)/dihydrogen and (IPr)Cu(NHPh)/benzene, respectively. Analysis of the DFT calculations reveals that the conversion of [(IPr)Cu(mu-H)]2 and aniline to (IPr)Cu(NHPh) and dihydrogen is favorable with DeltaH approximately -7 kcal/mol and DeltaG approximately -9 kcal/mol.  相似文献   

17.
The mononuclear pentafluorophenyl platinum complex containing the chelated diphenylphosphinous acid/diphenylphosphinite system [Pt(C(6)F(5)){(PPh(2)O)(2)H}(PPh(2)OH)] 1 has been prepared and characterised. 1 and the related alkynyl complex [Pt(C[triple bond, length as m-dash]CBu(t)){(PPh(2)O)(2)H}(PPh(2)OH)] 2 form infinite one-dimensional chains in the solid state based on intermolecular O-H[dot dot dot]O hydrogen bonding interactions. Deprotonation reactions of [PtL{(PPh(2)O)(2)H}(PPh(2)OH)] (L = C(6)F(5), C[triple bond, length as m-dash]CBu(t), C[triple bond, length as m-dash]CPh 3) with [Tl(acac)] yields tetranuclear Pt(2)Tl(2) complexes [PtL{(PPh(2)O)(2)H}(PPh(2)O)Tl](2) (L = C(6)F(5) 4, C[triple bond, length as m-dash]CBu(t), C[triple bond, length as m-dash]CPh ). The structure of the tert-butylalkynyl derivative , established by X-ray diffraction, shows two anionic discrete units [Pt(C[triple bond, length as m-dash]CBu(t)){(PPh(2)O)(2)H}(PPh(2)O)](-) joined by two Tl(i) centres via Tl-O and Pt-Tl bonds. Despite the existence of Pt-Tl interactions, they do not show luminescence.  相似文献   

18.
The olefinic C−H bond functionalization of (NHC)CHPh (NHC=IPr=C{(NAr)CH}2 1 ; SIPr=C{(NAr)CH2}2 2 ; Ar=2,6-iPr2C6H3), derived from classical N-heterocyclic carbenes (NHCs), with PCl3 affords the dichlorovinylphosphanes {(NHC)C(Ph)}PCl2 (NHC=IPr 3 , SIPr 4 ). Two-electron reduction of 3 and 4 with magnesium leads to the formation of the divinyldiphosphenes [{(NHC)C(Ph)}P]2 (NHC=IPr 5 , SIPr 6 ) as crystalline solids. Unlike literature-known diphosphenes, which are mostly yellow or orange, 5 is a green whereas 6 is a purple solid. Although the P=P bond lengths of 5 (2.062(1)) and 6 (2.055(1) Å) are comparable to those of the known diphosphenes (2.02–2.08 Å), the C−P bond lengths of 5 (1.785(1)) and 6 (1.797(1) Å) are, however, considerably shorter than a C −P single bond length (1.85 Å), indicating a considerable π-conjugation between C=C and P=P moieties. The HOMO–LUMO energy gap for 5 (4.15) and 6 (4.52 eV) is strikingly small and thus the narrowest among the diphosphenes (>4.93 eV) reported as yet. Consequently, 5 readily undergoes P=P bond cleavage at room temperature on treatment with sulfur to form the unique dithiophosphorane {(IPr)C(Ph)}P(S)2 7 . Interestingly, reaction of 5 with selenium gives the selenadiphosphirane [{(IPr)C(Ph)}P]2Se 8 with an intact P−P bond.  相似文献   

19.
The formation of amide bonds represents one of the most fundamental processes in organic synthesis. Transition-metal-catalyzed activation of acyclic twisted amides has emerged as an increasingly powerful platform in synthesis. Herein, we report the transamidation of N-activated twisted amides by selective N–C(O) cleavage mediated by air- and moisture-stable half-sandwich Ni(II)–NHC (NHC = N-heterocyclic carbenes) complexes. We demonstrate that the readily available cyclopentadienyl complex, [CpNi(IPr)Cl] (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene), promotes highly selective transamidation of the N–C(O) bond in twisted N-Boc amides with non-nucleophilic anilines. The reaction provides access to secondary anilides via the non-conventional amide bond-forming pathway. Furthermore, the amidation of activated phenolic and unactivated methyl esters mediated by [CpNi(IPr)Cl] is reported. This study sets the stage for the broad utilization of well-defined, air- and moisture-stable Ni(II)–NHC complexes in catalytic amide bond-forming protocols by unconventional C(acyl)–N and C(acyl)–O bond cleavage reactions.  相似文献   

20.
The reactivity of the Br?nsted basic mixed-metal tris-amide compounds of empirical formula [MMg(N(i)Pr2)3] [where M = Li (1), Na (2)] towards phenylacetylene (HC[triple bond, length as m-dash]CPh) has been investigated and has led to the synthesis of a series of mixed-metal acetylido-amido-magnesiates. Thus, 1 and 2 molar equivalents of the alkyne with [MMg(N(i)Pr2)3] produce heteroanionic bis(amido)-mono(acetylido) [LiMg(N(i)Pr2)2(C[triple bond, length as m-dash]CPh)]2 (3) and mono(amido)-bis(acetylido) [(TMEDA) x Na(C[triple bond, length as m-dash]CPh)2Mg(N(i)Pr2)](2) (4) (TMEDA = N,N,N',N'-tetramethylethylenediamine) respectively. X-Ray crystallographic studies reveal that the new compounds adopt a different structural motif. Complex can be defined as an inverse crown structure, having a cationic eight-atom [(NaNMgN)2]2+ ring which hosts in its core two acetylido ligands. On the other hand, adopts a tetranuclear NaMgMgNa near-linear chain arrangement, held together by acetylido and amido bridges. The metal coordination geometries in both structures are distorted tetrahedral, and the sodium cations at the end of the mixed-metal chain carry terminal chelating TMEDA ligands. 1H and 13C NMR spectral data recorded in C6D6 solutions are also reported for and , and are consistent with the solid-state structures being retained in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号