首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Visual observations through a microscope and in situ Raman measurements have been made for single crystalline ethylene hydrate (EH) and binary methane-ethylene hydrate (MEH) at pressures up to 3.7 GPa and room temperature. Both hydrates showed pressure-induced phase transitions at 1.6, 2.0, and 3.0 GPa for EH and at 1.7, 2.1, and 3.3 GPa for MEH. The cubic sI phase of EH and MEH remains stable up to 1.6 and 1.7 GPa, respectively, which are more widely ranging values than the values for the methane hydrate sI phase. In this sI phase of binary MEH, the cage occupancies by methane and ethylene molecules are investigated from Raman spectra. Above P = 3.0 GPa for EH and 3.3 GPa for MEH, they decomposed by associating with the formation of the polyethylene.  相似文献   

2.
The crystal structure and phase transition of cubic structure II (sII) binary clathrate hydrates of methane (CH4) and propanol are reported from powder X‐ray diffraction measurements. The deformation of host water cages at the cubic–tetragonal phase transition of 2‐propanol+CH4 hydrate, but not 1‐propanol+CH4 hydrate, was observed below about 110 K. It is shown that the deformation of the host water cages of 2‐propanol+CH4 hydrate can be explained by the restriction of the motion of 2‐propanol within the 51264 host water cages. This result provides a low‐temperature structure due to a temperature‐induced symmetry‐lowering transition of clathrate hydrate. This is the first example of a cubic structure of the common clathrate hydrate families at a fixed composition.  相似文献   

3.
Low-temperature and high-pressure experiments were performed on the filled ice Ic structure of hydrogen hydrate at previously unexplored conditions of 5-50 GPa and 30-300 K using diamond anvil cells and a helium-refrigeration cryostat. In situ x-ray diffractometry revealed that the cubic filled ice Ic structure transformed to tetragonal at low temperatures and high pressures; the axis ratio of the tetragonal phase changed depending on the pressure and temperature. These results were consistent with theoretical predictions performed via first principle calculations. The tetragonal phase was determined to be stable above 20 GPa at 300 K, above 15 GPa at 200 K, and above 10 GPa at 100 K. Further changes in the lattice parameters were observed from about 45-50 GPa throughout the temperature region examined, which suggests the transformation to another high-pressure phase above 50 GPa. In our previous x-ray study that was performed up to 80 GPa at room temperature, a similar transformation was observed above 50 GPa. In this study, the observed change in the lattice parameters corresponds to the beginning of that transformation. The reasons for the transformation to the tetragonal structure are briefly discussed: the tetragonal structure might be induced due to changes in the vibrational or rotational modes of the hydrogen molecules under low temperature and high pressure.  相似文献   

4.
It is shown that photoinduced reactions are observed at room temperature and pressure of few tenths of gigapascal in clathrate hydrates of CO and of model hydrocarbons under mild irradiation at 350 nm with power in the 50-610 mW range. The reactions are triggered by highly reactive OH radicals produced by two-photon excitation of the lowest electronic excited state of water having dissociative character. The formation of CO(2) is observed in all the reactions involving carbonaceous clathrate hydrates, and direct or indirect evidence for the formation of molecular hydrogen is obtained. The CO(2) produced in the reactions can be sequestered as a clathrate hydrate whose stability range seems to extend to room temperature at pressures of 0.5-0.6 GPa. Although the N(2) hydrate is stable up to 0.9 GPa under irradiation, a partial cleavage of the N-N triple bond is produced once the hydrate decomposes at 0.1 GPa.  相似文献   

5.
Guest-host hydrogen bonding in clathrate hydrates occurs when in addition to the hydrophilic moiety which causes the molecule to form hydrates under high pressure-low temperature conditions, the guests contain a hydrophilic, hydrogen bonding functional group. In the presence of carbon dioxide, ethanol clathrate hydrate has been synthesized with 10% of large structure I (sI) cages occupied by ethanol. In this work, we use molecular dynamics simulations to study hydrogen bonding structure and dynamics in this binary sI clathrate hydrate in the temperature range of 100-250 K. We observe that ethanol forms long-lived (>500 ps) proton-donating and accepting hydrogen bonds with cage water molecules from both hexagonal and pentagonal faces of the large cages while maintaining the general cage integrity of the sI clathrate hydrate. The presence of the nondipolar CO(2) molecules stabilizes the hydrate phase, despite the strong and prevalent alcohol-water hydrogen bonding. The distortions of the large cages from the ideal form, the radial distribution functions of the guest-host interactions, and the ethanol guest dynamics are characterized in this study. In previous work through dielectric and NMR relaxation time studies, single crystal x-ray diffraction, and molecular dynamics simulations we have observed guest-water hydrogen bonding in structure II and structure H clathrate hydrates. The present work extends the observation of hydrogen bonding to structure I hydrates.  相似文献   

6.
The structural identification and guest compositions of the mixed CO(2) and N(2) hydrates at low temperature conditions were investigated by both theoretical predictions and experimental measurements. From the model calculations, at very low temperatures, the highly CO(2)-concentrated hydrates over 95 mol % CO(2) on the basis of water-free concentration could coexist with the gas mixtures of low CO(2) concentrations in equilibrium. X-ray diffraction measurements of the hydrates formed with the gas mixture of 3.16 mol % CO(2) and balanced N(2) indicate that the formed hydrates at all conditions considered in this study were identified as structure I, whereas the model predicts a structural transition to structure II around 220 K. However, it was also found that the formed hydrate samples contain a considerable amount of hexagonal ice resulting from incomplete conversion of ice to the hydrates. The compositional analysis suggests that a favorable encaging of CO(2) in the mixed hydrate can be obtained by the hydrate formation at low temperatures and relative amount of CO(2) molecules in the mixed hydrates increases with a decrease of temperature.  相似文献   

7.
By employing first-principles metadynamics simulations, we explore the 300 K structures of solid hydrogen over the pressure range 150-300 GPa. At 200 GPa, we find the ambient-pressure disordered hexagonal close-packed (hcp) phase transited into an insulating partially ordered hcp phase (po-hcp), a mixture of ordered graphene-like H(2) layers and the other layers of weakly coupled, disordered H(2) molecules. Within this phase, hydrogen remains in paired states with creation of shorter intra-molecular bonds, which are responsible for the very high experimental Raman peak above 4000 cm(-1). At 275 GPa, our simulations predicted a transformation from po-hcp into the ordered molecular metallic Cmca phase (4 molecules∕cell) that was previously proposed to be stable only above 400 GPa. Gibbs free energy calculations at 300 K confirmed the energetic stabilities of the po-hcp and metallic Cmca phases over all known structures at 220-242 GPa and >242 GPa, respectively. Our simulations highlighted the major role played by temperature in tuning the phase stabilities and provided theoretical support for claimed metallization of solid hydrogen below 300 GPa at 300 K.  相似文献   

8.
常见客体分子对笼型水合物晶格常数的影响   总被引:1,自引:0,他引:1  
Natural gas hydrates are considered as ideal alternative energy resources for the future, and the relevant basic and applied research has become more attractive in recent years. The influence of guest molecules on the hydrate crystal lattice parameters is of great significances to the understanding of hydrate structural characteristics, hydrate formation/decomposition mechanisms, and phase stability behaviors. In this study, we test a series of artificial hydrate samples containing different guest molecules (e.g. methane, ethane, propane, iso-butane, carbon dioxide, tetrahydrofuran, methane + 2, 2-dimethylbutane, and methane + methyl cyclohexane) by a low-temperature powder X-ray diffraction (PXRD). Results show that PXRD effectively elucidates structural characteristics of the natural gas hydrate samples, including crystal lattice parameters and structure types. The relationships between guest molecule sizes and crystal lattice parameters reveal that different guest molecules have different controlling behaviors on the hydrate types and crystal lattice constants. First, a positive correlation between the lattice constants and the van der Waals diameters of homologous hydrocarbon gases was observed in the single-guest-component hydrates. Small hydrocarbon homologous gases, such as methane and ethane, tended to form sI hydrates, whereas relatively larger molecules, such as propane and iso-butane, generated sⅡ hydrates. The hydrate crystal lattice constants increased with increasing guest molecule size. The types of hydrates composed of oxygen-containing guest molecules (such as CO2 and THF) were also controlled by the van der Waals diameters. However, no positive correlation between the lattice constants and the van der Waals diameters of guest molecules in hydrocarbon hydrates was observed for CO2 hydrate and THF hydrate, probably due to the special interactions between the guest oxygen atoms and hydrate "cages". Furthermore, the influences of the macromolecules and auxiliary small molecules on the lengths of the different crystal axes of the sH hydrates showed inverse trends. Compared to the methane + 2, 2-dimethylbutane hydrate sample, the length of the a-axis direction of the methane + methyl cyclohexane hydrate sample was slightly smaller, whereas the length of the c-axis direction was slightly longer. The crystal a-axis length of the sH hydrate sample formed with nitrogen molecules was slightly longer, whereas the c-axis was shorter than that of the methane + 2, 2-dimethylbutane hydrate sample at the same temperature.  相似文献   

9.
Experimental data on the pressure dependence of unit cell parameters for the gas hydrates of ethane (cubic structure I, pressure range 0–2 GPa), xenon (cubic structure I, pressure range 0–1.5 GPa) and the double hydrate of tetrahydrofuran+xenon (cubic structure II, pressure range 0–3 GPa) are presented. Approximation of the data using the cubic Birch–Murnaghan equation, P=1.5B0[(V0/V)7/3?(V0/V)5/3], gave the following results: for ethane hydrate V0=1781 Å3, B0=11.2 GPa; for xenon hydrate V0=1726 Å3, B0=9.3 GPa; for the double hydrate of tetrahydrofuran+xenon V0=5323 Å3, B0=8.8 GPa. In the last case, the approximation was performed within the pressure range 0–1.5 GPa; it is impossible to describe the results within a broader pressure range using the cubic Birch–Murnaghan equation. At the maximum pressure of the existence of the double hydrate of tetrahydrofuran+xenon (3.1 GPa), the unit cell volume was 86 % of the unit cell volume at zero pressure. Analysis of the experimental data obtained by us and data available from the literature showed that 1) the bulk modulus of gas hydrates with classical polyhedral structures, in most cases, are close to each other and 2) the bulk modulus is mainly determined by the elasticity of the hydrogen‐bonded water framework. Variable filling of the cavities with guest molecules also has a substantial effect on the bulk modulus. On the basis of the obtained results, we concluded that the bulk modulus of gas hydrates with classical polyhedral structures and existing at pressures up to 1.5 GPa was equal to (9±2) GPa. In cases when data on the equations of state for the hydrates were unavailable, the indicated values may be recommended as the most probable ones.  相似文献   

10.
Heat capacities of structure I and II trimethylene oxide (TMO) clathrate hydrates doped with small amount of potassium hydroxide (x=1.8×10–4 to water) were measured by an adiabatic calorimeter in the temperature range 11–300 K. In the str. I hydrate (TMO·7.67H2O), a glass transition and a higher order phase transition were observed at 60 K and 107.9 K, respectively. The glass transition was considered to be due to the freezing of the reorientation of the host water molecules, which occurred around 85 K in the pure sample and was lowered owing to the acceleration effect of KOH. The relaxation time of the water reorientation and its distribution were estimated and compared with those of other clathrate hydrates. The phase transition was due to the orientational ordering of the guest TMO molecules accommodated in the cages formed by water molecules. The transition was of the higher order and the transition entropy was 1.88 J·K–1(TMO-mol)–1, which indicated that at least 75% of orientational disorder was remaining in the low temperature phase. In the str. II hydrates (TMO·17H2O), only one first-order phase transition appeared at 34.5 K. This transition was considered to be related to the orientational ordering of the water molecules as in the case of the KOH-doped acetone and tetrahydrofuran (THF) hydrates. The transition entropy was 2.36 JK–1(H2O-mol)–1, which is similar to those observed in the acetone and THF hydrates. The relations of the transition temperature and entropy to the guest properties (size and dipole moment) were discussed.Contribution No 57 from the Microcalorimetry Research CenterThe authors would like to express their sincere thanks to the Nissan Science Foundation for their financial support.  相似文献   

11.
The pressure dependence (0.4 Mpa–1.3 GPa) of the hydrate decomposition temperatures in the sulfur hexafluoride-water system has been studied. In addition to the known low-pressure hydrate SF617H2O of Cubic Structure II, two new high-pressure hydrates have been found. X-ray analysis in situ showed the gas hydrate forming in the sulfur hexafluoride-water system above 50 MPa at room temperature to be of Cubic Structure I. The ability of water to form hydrates whose structures depend on the guest molecule size under normal conditions and at high pressures is discussed.  相似文献   

12.
Direct observations through a microscope and in-situ Raman scattering measurements of synthesized single-crystalline Kr hydrate have been performed at pressures up to 5.2 GPa and 296 K. We have observed that the initial cubic structure II (sII) of Kr hydrate successively transforms to a cubic structure I (sI), a hexagonal structure, and an orthorhombic structure (sO) called "filled ice" at 0.45, 0.75, and 1.8 GPa, respectively. The sO phase exists at least up to 5.2 GPa. In addition to these transformations, we have also found the new phase behavior at 1.0 GPa, which is most likely caused by the change of cage occupancy of host water cages by guest Kr atoms without structural change. Raman scattering measurements for observed phases have shown that the lattice vibrational peak at around 130 cm(-1) disappears in the pressure region of sI, which enables us to distinguish the sI phase from sII and sH phases.  相似文献   

13.
Decomposition curves of gas hydrates formed in the ethane–hydrogen–water system were studied in the pressure interval 2–250 MPa. Gas hydrates synthesized at low (up to 5 MPa) pressures were also studied with use of X-ray powder diffraction and Raman spectroscopy. It was shown that ethane–hydrogen mixtures with hydrogen contents 0–30 mol.% form cubic structure I gas hydrates. Higher hydrogen concentration most probably results in appearance of another hydrate phase. We speculate that the gas mixtures with the hydrogen content above 60 mol.% form cubic structure II double hydrate of hydrogen and ethane at temperatures below ≈280 K and pressures above 25 MPa.  相似文献   

14.
It has long been known that crystalline hydrates are formed by many simple gases that do not interact strongly with water, and in most cases the gas molecules or atoms occupy 'cages' formed by a framework of water molecules. The majority of these gas hydrates adopt one of two cubic cage structures and are called clathrate hydrates. Notable exceptions are hydrogen and helium which form 'exotic' hydrates with structures based on ice structures, rather than clathrate hydrates, even at low pressures. Clathrate hydrates have been extensively studied because they occur widely in nature, have important industrial applications, and provide insight into water-guest hydrophobic interactions. Until recently, the expectation-based on calculations-had been that all clathrate hydrates were dissociated into ice and gas by the application of pressures of 1 GPa or so. However, over the past five years, studies have shown that this view is incorrect. Instead, all the systems so far studied undergo structural rearrangement to other, new types of hydrate structure that remain stable to much higher pressures than had been thought possible. In this paper we review work on gas hydrates at pressures above 0.5 GPa, identify common trends in transformations and structures, and note areas of uncertainty where further work is needed.  相似文献   

15.
Phase equilibrium conditions and the crystallographic properties of structure-H type gas hydrates containing various amounts of methane (CH4), carbon dioxide (CO2), neohexane (2,2-dimethylbutane; NH), and liquid water were investigated. When the CH4 concentration was as high as approximately 70%, the phase equilibrium pressure of the structure-H hydrate, which included NH, was about 1 MPa lower at a given temperature than that of the structure-I hydrate with the same composition (except for a lack of NH). However, as the CO2 concentration increased, the pressure difference between the structures became smaller and, at CO2 concentrations below 50%, the phase equilibrium line for the structure-H hydrate crossed that for the structure I. This cross point occurred at a lower temperature at higher CO2 concentration. Extrapolating this relation between the cross point and the CO2 concentration to 100% CO2 suggests that the cross-point temperature would be far below 273.2 K. It is then difficult to form structure-H hydrates in the CO2-NH-liquid water system. To examine the structure, guest composition, and formation process of structure-H hydrates at various CH4-CO2 compositions, we used the methods of Raman spectroscopy, X-ray diffraction, and gas chromatography. Raman spectroscopic analyses indicated that the CH4 molecules were found to occupy both 5(12) and 4(3)5(6)6(3) cages, but they preferably occupied only the 5(12) cages. On the other hand, the CO2 molecules appeared to be trapped only in the 4(3)5(6)6(3) cages. Thus, the CO2 molecules aided the formation of structure-H hydrates even though they reduced the stability of that structure. This encaged condition of guest molecules was also compared with the theoretical calculations. In the batch-type reactor, this process may cause the fractionation of the remaining vapor composition in the opposite sense as that for CH4-CO2 hydrate (structure-I), and thus may result in an alternating formation of structure-H hydrates and structure-I in the same batch-type reactor.  相似文献   

16.
In this study, we investigate the crystal structures and phase equilibria of butanols+CH4+H2O systems to reveal the hydroxy group positioning and its effects on hydrate stability. Four clathrate hydrates formed by structural butanol isomers are identified with powder X‐ray diffraction (PXRD). In addition, Raman spectroscopy is used to analyze the guest distributions and inclusion behaviors of large alcohol molecules in these hydrate systems. The existence of a free OH indicates that guest molecules can be captured in the large cages of structure II hydrates without any hydrogen‐bonding interactions between the hydroxy group of the guests and the water‐host framework. However, Raman spectra of the binary (1‐butanol+CH4) hydrate do not show the free OH signal, indicating that there could be possible hydrogen‐bonding interactions between the guests and hosts. We also measure the four‐phase equilibrium conditions of the butanols+CH4+H2O systems.  相似文献   

17.
Phase equilibria in the system H2-CH4-H2O are investigated by means of differential thermal analysis within hydrogen concentration range 0-70 mol % and at a pressure up to 250 MPa. All the experiments were carried out under the conditions of gas excess. With an increase in hydrogen concentration in the initial gas mixture, decomposition temperature of the formed hydrates decreased. X-ray diffraction patterns and Raman spectra of the quenched hydrate samples obtained at a pressure of 20 MPA from a gas mixture containing 40 mol % hydrogen were recorded. It turned out that the hydrate has cubic structure I under these conditions. The Raman spectra showed that hydrogen molecules are not detected in the hydrate within the sensitivity of the method, that is, almost pure methane hydrate is formed. The general view of the phase diagram of the investigated system is proposed. A thermodynamic model was proposed to explain a decrease in hydrate decomposition temperature in the system with an increase in the concentration of hydrogen in the initial mixture.  相似文献   

18.
The first crystal structure is reported for a silicate clathrate hydrate involving a triply charged cation [C18H30N3]3+ and an octameric cubic silicate cage. The structure is essentially a host/guest system, with the silicate cages linked into a framework by hydrogen bonding to water molecules. The space group is P with Z = 2, and the asymmetric unit includes a complete cation and half the anion, plus 21 water molecules (4 of which are in disordered positions). Solid-state (CPMAS) 29Si and 13CNMR spectra are consistent with the diffraction-determined structure and indicate substantial distortion of the anion from cubic symmetry. Solution-state spectra of precursor solutions and of melted material are also presented and discussed.  相似文献   

19.
Binary mixtures of hydrogen and ammonia were compressed in diamond anvil cells to 15 GPa at room temperature over a range of compositions. The phase behavior was characterized using optical microscopy, Raman spectroscopy, and synchrotron X-ray diffraction. Below 1.2 GPa we observed two-phase coexistence between liquid ammonia and fluid hydrogen phases with limited solubility of hydrogen within the ammonia-rich phase. Complete immiscibility was observed subsequent to the freezing of ammonia phase III at 1.2 GPa, although hydrogen may become metastably trapped within the disordered face-centered-cubic lattice upon rapid solidification. For all compositions studied, the phase III to phase IV transition of ammonia occurred at ~3.8 GPa and hydrogen solidified at ~5.5 GPa, transition pressures equivalent to those observed for the pure components. A P-x phase diagram for the NH(3)-H(2) system is proposed on the basis of these observations with implications for planetary ices, molecular compound formation, and possible hydrogen storage materials.  相似文献   

20.
Low-temperature, low-pressure studies of clathrate hydrates (CHs) have revealed that small ether and other proton-acceptor guests greatly enhance rates of clathrate hydrate nucleation and growth; rapid formation and transformations are enabled at temperatures as low as 110 K, and cool moist vapors containing small ether molecules convert to mixed-gas CHs on a subsecond time scale. More recently, FTIR spectroscopic studies of the tetrahydrofuran (THF)-HCN double clathrate hydrate revealed a sizable frequency shift accompanied by a four-fold intensification of the C-N stretch-mode absorption of the small cage HCN, behavior that is enhanced by cooling and which correlates precisely with similar significant changes of the ether C-O/C-C stretch modes. These temperature-dependent correlated changes in the infrared spectra have been attributed to equilibrated extensive hydrogen bonding of neighboring large- and small-cage guest molecules with water molecules of the intervening wall. An ether guest functions as a proton acceptor, particularly so when complemented by the action of a proton-donor (HCN)/electron-acceptor (SO(2)) small-cage guest. Because guest molecules of the classic clathrate hydrates do not participate in hydrogen bonds with the host water, this H-bonding of guests has been labeled "nonclassical". The present study has been enriched by comparing observed FTIR spectra with high-level molecular orbital computational results for guests and hydrogen-bonded guest-water dimers. Vibrational frequency shifts, from heterodimerization of ethers and water, correlate well with the corresponding observed classical to nonclassical shifts. The new spectroscopic data reveal that the nonclassical structures can contribute at observable levels to CH infrared spectra for a remarkable range of temperatures and choice of guest molecules. By the choice of guest molecules, it is now possible to select the abundance levels of nonclassical configurations, ranging from ~0 to 100%, for a given temperature. This ability is expected to hasten understanding of the role of guest-induced nonclassical structures in the acceleration or inhibition of the rates of CH formation and transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号