首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitroxide free radicals are the most commonly used source for dynamic nuclear polarization (DNP) enhanced nuclear magnetic resonance (NMR) experiments and are also exclusively employed as spin labels for electron spin resonance (ESR) spectroscopy of diamagnetic molecules and materials. Nitroxide free radicals have been shown to have strong dipolar coupling to (1)H in water, and thus result in large DNP enhancement of (1)H NMR signal via the well known Overhauser effect. The fundamental parameter in a DNP experiment is the coupling factor, since it ultimately determines the maximum NMR signal enhancements which can be achieved. Despite their widespread use, measurements of the coupling factor of nitroxide free radicals have been inconsistent, and current models have failed to successfully explain our experimental data. We found that the inconsistency in determining the coupling factor arises from not taking into account the characteristics of the ESR transitions, which are split into three (or two) lines due to the hyperfine coupling of the electron to the (14)N nuclei (or (15)N) of the nitric oxide radical. Both intermolecular Heisenberg spin exchange interactions as well as intramolecular nitrogen nuclear spin relaxation mix the three (or two) ESR transitions. However, neither effect has been taken into account in any experimental studies on utilizing or quantifying the Overhauser driven DNP effects. The expected effect of Heisenberg spin exchange on Overhauser enhancements has already been theoretically predicted and observed by Bates and Drozdoski [J. Chem. Phys. 67, 4038 (1977)]. Here, we present a new model for quantifying Overhauser enhancements through nitroxide free radicals that includes both effects on mixing the ESR hyperfine states. This model predicts the maximum saturation factor to be considerably higher by the effect of nitrogen nuclear spin relaxation. Because intramolecular nitrogen spin relaxation is independent of the nitroxide concentration, this effect is still significant at low radical concentrations where electron spin exchange is negligible. This implies that the only correct way to determine the coupling factor of nitroxide free radicals is to measure the maximum enhancement at different concentrations and extrapolate the results to infinite concentration. We verify our model with a series of DNP experimental studies on (1)H NMR signal enhancement of water by means of (14)N as well as (15)N isotope enriched nitroxide radicals.  相似文献   

2.
The dynamic nuclear polarization (DNP) process in solids depends on the magnitudes of hyperfine interactions between unpaired electrons and their neighboring (core) nuclei, and on the dipole-dipole interactions between all nuclei in the sample. The polarization enhancement of the bulk nuclei has been typically described in terms of a hyperfine-assisted polarization of a core nucleus by microwave irradiation followed by a dipolar-assisted spin diffusion process in the core-bulk nuclear system. This work presents a theoretical approach for the study of this combined process using a density matrix formalism. In particular, solid effect DNP on a single electron coupled to a nuclear spin system is considered, taking into account the interactions between the spins as well as the main relaxation mechanisms introduced via the electron, nuclear, and cross-relaxation rates. The basic principles of the DNP-assisted spin diffusion mechanism, polarizing the bulk nuclei, are presented, and it is shown that the polarization of the core nuclei and the spin diffusion process should not be treated separately. To emphasize this observation the coherent mechanism driving the pure spin diffusion process is also discussed. In order to demonstrate the effects of the interactions and relaxation mechanisms on the enhancement of the nuclear polarization, model systems of up to ten spins are considered and polarization buildup curves are simulated. A linear chain of spins consisting of a single electron coupled to a core nucleus, which in turn is dipolar coupled to a chain of bulk nuclei, is considered. The interaction and relaxation parameters of this model system were chosen in a way to enable a critical analysis of the polarization enhancement of all nuclei, and are not far from the values of (13)C nuclei in frozen (glassy) organic solutions containing radicals, typically used in DNP at high fields. Results from the simulations are shown, demonstrating the complex dependences of the DNP-assisted spin diffusion process on variations of the relevant parameters. In particular, the effect of the spin lattice relaxation times on the polarization buildup times and the resulting end polarization are discussed, and the quenching of the polarizations by the hyperfine interaction is demonstrated.  相似文献   

3.
Dynamic nuclear polarization (DNP) increases NMR sensitivity by transferring polarization from electron to nuclear spins. Herein, we demonstrate that electron decoupling with chirped microwave pulses enables improved observation of DNP‐enhanced 13C spins in direct dipolar contact with electron spins, thereby leading to an optimal delay between transients largely governed by relatively fast electron relaxation. We report the first measurement of electron longitudinal relaxation time (T1e) during magic angle spinning (MAS) NMR by observation of DNP‐enhanced NMR signals (T1e=40±6 ms, 40 mM trityl, 4.0 kHz MAS, 4.3 K). With a 5 ms DNP period, electron decoupling results in a 195 % increase in signal intensity. MAS at 4.3 K, DNP, electron decoupling, and short recycle delays improve the sensitivity of 13C in the vicinity of the polarizing agent. This is the first demonstration of recovery times between MAS‐NMR transients being governed by short electron T1 and fast DNP transfer.  相似文献   

4.
Microwave driven dynamic nuclear polarization (DNP) is a process in which the large polarization present in an electron spin reservoir is transferred to nuclei, thereby enhancing NMR signal intensities. In solid dielectrics there are three mechanisms that mediate this transfer--the solid effect (SE), the cross effect (CE), and thermal mixing (TM). Historically these mechanisms have been discussed theoretically using thermodynamic parameters and average spin interactions. However, the SE and the CE can also be modeled quantum mechanically with a system consisting of a small number of spins and the results provide a foundation for the calculations involving TM. In the case of the SE, a single electron-nuclear spin pair is sufficient to explain the polarization mechanism, while the CE requires participation of two electrons and a nuclear spin, and can be used to understand the improved DNP enhancements observed using biradical polarizing agents. Calculations establish the relations among the electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) frequencies and the microwave irradiation frequency that must be satisfied for polarization transfer via the SE or the CE. In particular, if δ, Δ < ω(0I), where δ and Δ are the homogeneous linewidth and inhomogeneous breadth of the EPR spectrum, respectively, we verify that the SE occurs when ω(M) = ω(0S) ± ω(0I), where ω(M), ω(0S) and ω(0I) are, respectively, the microwave, and the EPR and NMR frequencies. Alternatively, when Δ > ω(0I) > δ, the CE dominates the polarization transfer. This two-electron process is optimized when ω(0S(1))-ω(0S(2)) = ω(0I) and ω(M)~ω(0S(1)) or ω(0S(2)), where ω(0S(1)) and ω(0S(2)) are the EPR Larmor frequencies of the two electrons. Using these matching conditions, we calculate the evolution of the density operator from electron Zeeman order to nuclear Zeeman order for both the SE and the CE. The results provide insights into the influence of the microwave irradiation field, the external magnetic field, and the electron-electron and electron-nuclear interactions on DNP enhancements.  相似文献   

5.
Detailed dynamic nuclear polarization and electron spin resonance studies were carried out for 3‐carbamoyl‐2,2,5,5‐tetramethyl‐pyrrolidine‐1‐oxyl, 3‐carboxy‐2,2,5,5‐tetramethyl‐pyrrolidine‐1‐oxyl,3‐methoxycarbonyl‐2,2,5,5‐tetramethy pyrolidine‐1‐oxyl nitroxyl radicals and their corresponding deuterated nitroxyl radicals, used in Overhauser‐enhanced magnetic resonance imaging for the first time. The dynamic nuclear polarization parameters such as dynamic nuclear polarization (DNP) factor, longitudinal relaxivity, saturation parameter, leakage factor and coupling factor were estimated for deuterated nitroxyl radicals. DNP enhancement increases with agent concentration up to 3 mm and decreases above 3 mm . The proton spin–lattice relaxation time and the longitudinal relaxivity parameters were estimated. The leakage factor increases with increasing agent concentration up to 3 mm and reaches plateau in the region 3–5 mm . The coupling parameter shows the interaction between the electron and nuclear spins to be mainly dipolar in origin. DNP spectrum exhibits that the full width at half maximum values are higher for undeuterated nitroxyl radicals compared with deuterated nitroxyl radicals, which leads to the increase in DNP enhancement. The ESR parameters such as, the line width, line shape, signal intensity ratio, rotational correlation time, hyperfine coupling constant and g‐factor were calculated. The narrow line width was observed for deuterated nitroxyl radicals compared with undeuterated nitroxyl radicals, which leads to the higher saturation parameter value and DNP enhancement. The novelty of the work permits clear understanding of the DNP parameters determining the higher DNP enhancement compared with the undeuterated nitroxyl radicals. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
Water soluble perchlorinated trityl (PTM) radicals were found to be effective 95 GHz DNP (dynamic nuclear polarization) polarizers in ex situ (dissolution) (13)C DNP (Gabellieri et al., Angew Chem., Int. Ed. 2010, 49, 3360). The degree of the nuclear polarization obtained was reported to be dependent on the position of the chlorine substituents on the trityl skeleton. In addition, on the basis of the DNP frequency sweeps it was suggested that the (13)C NMR signal enhancement is mediated by the Cl nuclei. To understand the DNP mechanism of the PTM radicals we have explored the 95 GHz EPR characteristics of these radicals that are relevant to their performance as DNP polarizers. The EPR spectra of the radicals revealed axially symmetric g-tensors. A comparison of the spectra with the (13)C DNP frequency sweeps showed that although the solid effect mechanism is operational the DNP frequency sweeps reveal some extra width suggesting that contributions from EPR forbidden transitions involving (35,37)Cl nuclear flips are likely. This was substantiated experimentally by ELDOR (electron-electron double resonance) detected NMR measurements, which map the EPR forbidden transitions, and ELDOR experiments that follow the depolarization of the electron spin upon irradiation of the forbidden EPR transitions. DFT (density functional theory) calculations helped to assign the observed transitions and provided the relevant spin Hamiltonian parameters. These results show that the (35,37)Cl hyperfine and nuclear quadrupolar interactions cause a considerable nuclear state mixing at 95 GHz thus facilitating the polarization of the Cl nuclei upon microwave irradiation. Overlap of Cl nuclear frequencies and the (13)C Larmor frequency further facilitates the polarization of the (13)C nuclei by spin diffusion. Calculation of the (13)C DNP frequency sweep based on the Cl nuclear polarization showed that it does lead to an increase in the width of the spectra, improving the agreement with the experimental sweeps, thus supporting the existence of a new heteronuclear assisted DNP mechanism.  相似文献   

7.
The sensitivity of NMR spectroscopy is considerably enhanced by dynamic nuclear polarization (DNP). In DNP polarization is transferred from unpaired electrons of a polarizing agent to nearby proton spins. In solids, this transfer is followed by the transport of hyperpolarization to the bulk via 1H-1H spin diffusion. The efficiency of these steps is critical to obtain high sensitivity gains, but the pathways for polarization transfer in the region near the unpaired electron spins are unclear. Here we report a series of seven deuterated and one fluorinated TEKPol biradicals to probe the effect of deprotonation on MAS DNP at 9.4 T. The experimental results are interpreted with numerical simulations, and our findings support that strong hyperfine couplings to nearby protons determine high transfer rates across the spin diffusion barrier to achieve short build-up times and high enhancements. Specifically, 1H DNP build-up times increase substantially with TEKPol isotopologues that have fewer hydrogen atoms in the phenyl rings, suggesting that these protons play a crucial role transferring the polarization to the bulk. Based on this new understanding, we have designed a new biradical, NaphPol, which yields significantly increased NMR sensitivity, making it the best performing DNP polarizing agent in organic solvents to date.  相似文献   

8.
Single crystal silicon is an excellent system to explore dynamic nuclear polarization (DNP), as it exhibits a continuum of properties from metallic to insulating as a function of doping concentration and temperature. At low doping concentrations DNP has been observed to occur via the solid effect, while at very high-doping concentrations an Overhauser mechanism is responsible. Here we report the hyperpolarization of (29)Si in n-doped silicon crystals, with doping concentrations in the range of (1-3)?× 10(17) cm(-3). In this regime exchange interactions between donors become extremely important. The sign of the enhancement in our experiments and its frequency dependence suggest that the (29)Si spins are directly polarized by donor electrons via an Overhauser mechanism within exchange-coupled donor clusters. The exchange interaction between donors only needs to be larger than the silicon hyperfine interaction (typically much smaller than the donor hyperfine coupling) to enable this Overhauser mechanism. Nuclear polarization enhancement is observed for a range of donor clusters in which the exchange energy is comparable to the donor hyperfine interaction. The DNP dynamics are characterized by a single exponential time constant that depends on the microwave power, indicating that the Overhauser mechanism is a rate-limiting step. Since only about 2% of the silicon nuclei are located within 1 Bohr radius of the donor electron, nuclear spin diffusion is important in transferring the polarization to all the spins. However, the spin-diffusion time is much shorter than the Overhauser time due to the relatively weak silicon hyperfine coupling strength. In a 2.35 T magnetic field at 1.1 K, we observed a DNP enhancement of 244 ± 84 resulting in a silicon polarization of 10.4 ± 3.4% following 2 h of microwave irradiation.  相似文献   

9.
High‐spin complexes act as polarizing agents (PAs) for dynamic nuclear polarization (DNP) in solid‐state NMR spectroscopy and feature promising aspects towards biomolecular DNP. We present a study on bis(Gd‐chelate)s which enable cross effect (CE) DNP owing to spatial confinement of two dipolar‐coupled electron spins. Their well‐defined Gd⋅⋅⋅Gd distances in the range of 1.2–3.4 nm allowed us to elucidate the Gd⋅⋅⋅Gd distance dependence of the DNP mechanism and NMR signal enhancement. We found that Gd⋅⋅⋅Gd distances above 2.1 nm result in solid effect DNP while distances between 1.2 and 2.1 nm enable CE for 1H, 13C, and 15N nuclear spins. We compare 263 GHz electron paramagnetic resonance (EPR) spectra with the obtained DNP field profiles and discuss possible CE matching conditions within the high‐spin system and the influence of dipolar broadening of the EPR signal. Our findings foster the understanding of the CE mechanism and the design of high‐spin PAs for specific applications of DNP.  相似文献   

10.
In dynamic nuclear polarization (DNP) experiments applied to organic solids for creating nonequilibrium, high (1)H spin polarization, an efficient buildup of (1)H polarization is attained by partially deuterating the material of interest with an appropriate (1)H concentration. In such a dilute (1)H spin system, it is shown that the (1)H spin diffusion rate and thereby the buildup efficiency of (1)H polarization can further be enhanced by continually applying radiofrequency irradiation for deuterium decoupling during the DNP process. As experimentally confirmed in this work, the electron spin polarization of the photoexcited triplet state is mainly transferred only to those (1)H spins, which are in the vicinity of the electron spins, and (1)H spin diffusion transports the localized (1)H polarization over the whole sample volume. The (1)H spin diffusion coefficients are estimated from DNP repetition interval dependence of the initial buildup rate of (1)H polarization, and the result indicates that the spin diffusion coefficient is enhanced by a factor of 2 compared to that without (2)H decoupling.  相似文献   

11.
12.
Using dynamic nuclear polarization (DNP)/nuclear magnetic resonance instrumentation that utilizes a microwave cavity and a balanced rf circuit, we observe a solid effect DNP enhancement of 94 at 5 T and 80 K using trityl radical as the polarizing agent. Because the buildup rate of the solid effect increases with microwave field strength, we obtain a sensitivity gain of 128. The data suggest that higher microwave field strengths would lead to further improvements in sensitivity. In addition, the observation of microwave field dependent enhancements permits us to draw conclusions about the path that polarization takes during the DNP process. By measuring the time constant for the polarization buildup and enhancement as a function of the microwave field strength, we are able to compare models of polarization transfer, and show that the major contribution to the bulk polarization arises via direct transfer from electrons, rather than transferring first to nearby nuclei and then transferring to bulk nuclei in a slow diffusion step. In addition, the model predicts that nuclei near the electron receive polarization that can relax, decrease the electron polarization, and attenuate the DNP enhancement. The magnitude of this effect depends on the number of near nuclei participating in the polarization transfer, hence the size of the diffusion barrier, their T(1), and the transfer rate. Approaches to optimizing the DNP enhancement are discussed.  相似文献   

13.
Poly(dicarbon monofluoride) (C2F)n was studied by electron paramagnetic resonance (EPR) and solid-state nuclear magnetic resonance (NMR). The effects of physisorbed oxygen on the EPR and NMR relaxation were underlined and extrapolated to poly(carbon monofluoride) (CF)n and semi-covalent graphite fluoride prepared at room temperature. Physisorbed oxygen molecules are shown to be an important mechanism of both electronic and nuclear relaxations, resulting in apparent spin-lattice relaxation time and line width during NMR and EPR measurements, respectively. The effect of paramagnetic centers on the 19F spin-lattice relaxation was underlined in accordance with the high electron spin density determined by EPR. 19F magic angle spinning (MAS) NMR, 13C MAS NMR, and 13C MAS NMR with 19F to 13C cross polarization (CP) underline the presence of two types of carbon atoms, both sp3 hybridized: some covalently bonded to fluorine and the others linked exclusively to carbon atoms. Finally, a C-F bond length of 0.138 +/- 0.002 nm has been determined thanks to the re-introduction of dipolar coupling using cross polarization.  相似文献   

14.
The goal of dynamic nuclear polarization (DNP) is to enhance NMR signals by transferring electron spin polarization to the nuclei. Although mechanisms such as the solid effect and thermal mixing can be used for DNP in the solid state, currently, the only practical mechanism in solutions is the Overhauser effect (OE), which usually arises due to dipolar relaxation between electrons and the nuclei. At magnetic fields greater than approximately 1 T, dipolar relaxation does not result in a useful enhancement and therefore the conventional wisdom is that DNP should not work in solutions at high magnetic fields. However, scalar relaxation due to time-dependent scalar couplings has a different magnetic field dependence and can lead to substantial OE enhancements. At room temperature and at a magnetic field of 5 T (211 MHz for protons, 140 GHz for electrons), we have observed that scalar relaxation between electrons and nuclei results in NMR signal enhancements of 180, 42, -36, and 8, for 31P, 13C, 15N, and 19F, respectively.  相似文献   

15.
Spin polarization of 81Br (I = 32) nuclei is achieved via cross relaxation between electronic spins of the excited triplet state of a quinoxaline guest molecule and nuclei on neighbouring molecules in a p-dibromobenzene host crystal. The cross relaxation rate is of the order of 106 s?1 and is driven by the intermolecular hyperfine interaction. Additionally, NQR transitions have been induced in the single ground state and have been optically detected by means of an optical pumping cycle involving nuclear spin polarization.  相似文献   

16.
We introduce a novel design for millimeter wave electromagnetic structures within magic angle spinning (MAS) rotors. In this demonstration, a copper coating is vacuum deposited onto the outside surface of a sapphire rotor at a thickness of 50 nm. This thickness is sufficient to reflect 197‐GHz microwaves, yet not too thick as to interfere with radiofrequency fields at 300 MHz or prevent sample spinning due to eddy currents. Electromagnetic simulations of an idealized rotor geometry show a microwave quality factor of 148. MAS experiments with sample rotation frequencies of ωr/2π = 5.4 kHz demonstrate that the drag force due to eddy currents within the copper does not prevent sample spinning. Spectra of sodium acetate show resolved 13C J‐couplings of 60 Hz and no appreciable broadening between coated and uncoated sapphire rotors, demonstrating that the copper coating does not prevent shimming and high‐resolution nuclear magnetic resonance spectroscopy. Additionally, 13C Rabi nutation curves of ω1/2π = 103 kHz for both coated and uncoated rotors indicate no detrimental impact of the copper coating on radio frequency coupling of the nuclear spins to the sample coil. We present this metal coated rotor as a first step towards an MAS resonator. MAS resonators are expected to have a significant impact on developments in electron decoupling, pulsed dynamic nuclear polarization (DNP), room temperature DNP, DNP with low‐power microwave sources, and electron paramagnetic resonance detection.  相似文献   

17.
Overhauser effect type dynamic nuclear polarization experiments were performed to study suspensions of asphaltene in the xylene isomers (o‐, m‐, p‐) at a low magnetic field of 1.44 mT and three different temperatures (15, 25, and 35°C). The asphaltene was extracted from MC‐800 liquid asphalt. Intermolecular spin‐spin interactions occur between nuclear spins of hydrogen in the solvent medium and the free electron spins in the asphaltene micelles. The electron paramagnetic resonance spectrum of the asphaltene was obtained and the saturation experiments were applied to the samples prepared in vacuum. For all media, the dipole‐dipole interaction is predominant due to the negative signal enhancements. In all temperatures, the ultimate enhancement is the smallest for the p‐xylene solvent medium which has the lowest electrical dipole moment. The normalized low frequency relaxation components were calculated for 25°C, and the behavior of the nuclear‐electron coupling parameter according to this component is in agreement with the other works in the literature.  相似文献   

18.
Solution‐state Overhauser dynamic nuclear polarization (ODNP) at moderate fields, performed by saturating the electron spin resonance (ESR) of a free radical added to the sample of interest, is well known to lead to significant NMR signal enhancements in the steady state, owing to electron–nuclear cross‐relaxation. Here it is shown that under conditions which limit radical access to the molecules of interest, the time course of establishment of ODNP can provide a unique window into internuclear cross‐relaxation, and reflects relatively slow molecular motions. This behavior, modeled mathematically by a three‐spin version of the Solomon equations (one unpaired electron and two nuclear spins), is demonstrated experimentally on the 19F/1H system in ionic liquids. Bulky radicals in these viscous environments turn out to be just the right setting to exploit these effects. Compared to standard nuclear Overhauser effect (NOE) work, the present experiment offers significant improvement in dynamic range and sensitivity, retains usable chemical shift information, and reports on molecular motions in the sub‐megahertz (MHz) to tens of MHz range—motions which are not accessed at high fields.  相似文献   

19.
For over five decades, the solid effect (SE) has been heavily utilized as a mechanism for performing dynamic nuclear polarization (DNP). Nevertheless, it has not found widespread application in contemporary, high magnetic field DNP experiments because SE enhancements display an ω(0) (-2) field dependence. In particular, for nominally forbidden zero and double quantum SE transitions to be partially allowed, it is necessary for mixing of adjacent nuclear spin states to occur, and this leads to the observed field dependence. However, recently we have improved our instrumentation and report here an enhancement of ? = 91 obtained with the organic radical trityl (OX063) in magic angle spinning experiments performed at 5 T and 80 K. This is a factor of 6-7 higher than previous values in the literature under similar conditions. Because the solid effect depends strongly on the microwave field strength, we attribute this large enhancement to larger microwave field strengths inside the sample volume, achieved with more efficient coupling of the gyrotron to the sample chamber. In addition, we develop a theoretical model to explain the dependence of the buildup rate of enhanced nuclear polarization and the steady-state enhancement on the microwave power. Buildup times and enhancements were measured as a function of (1)H concentration for both trityl and Gd-DOTA. Comparison of the results indicates that for trityl the initial polarization step is the slower, rate-determining step. However, for Gd-DOTA the spread of nuclear polarization via homonuclear (1)H spin diffusion is rate-limiting. Finally, we discuss the applicability of the solid effect at fields > 5 T and the requirements to address the unfavorable field dependence of the solid effect.  相似文献   

20.
While dynamic nuclear polarization (DNP) under magic‐angle spinning (MAS) is generally a powerful method capable of greatly enhancing the sensitivity of solid‐state NMR spectroscopy, hyperpolarization also gives rise to peculiar spin dynamics. Here, we elucidate how specific cross‐relaxation enhancement by active motions under DNP (SCREAM‐DNP) can be utilized to selectively obtain MAS‐NMR spectra of an RNA aptamer in a tightly bound complex with a methyl‐bearing ligand (tetracycline) due to the effective CH3‐reorientation at an optimized sample temperature of approximately 160 K. SCREAM‐DNP can spectrally isolate the complex from non‐bound species in an RNA mixture. This selectivity allows for a competition assay between the aptamer and a mutant with compromised binding affinity. Variations in molecular structure and methyl dynamics, as observed by SCREAM‐DNP, between free tetracycline and RNA‐bound tetracycline are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号