首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The network simulation method is used to calculate the electrostatic potential distribution for suspended spherical particles made of a charged core surrounded by a permeable membrane with adsorbed charges. The structure of the equilibrium diffuse double layers on both sides of the membrane-electrolyte solution interface is analyzed considering an anion adsorption process described by a Langmuir-type isotherm. It is shown that the thickness of the double layer in the membrane strongly depends on the adsorption constant, while it is almost independent of this constant in the electrolyte solution. The evolution of the electric potential on the core as a function of the electrolyte concentration is also analyzed.  相似文献   

2.
An analytical study is presented for the quasisteady sedimentation of a charged spherical particle located at the center of a charged spherical cavity. The overlap of the electric double layers is allowed, and the polarization (relaxation) effect in the double layers is considered. The electrokinetic equations that govern the ionic concentration distributions, electric potential profile, and fluid flow field in the electrolyte solution are linearized assuming that the system is only slightly distorted from equilibrium. Using a perturbation method, these linearized equations are solved for a symmetric electrolyte with the surface charge densities of the particle and cavity as the small perturbation parameters. An analytical expression for the settling velocity of the charged sphere is obtained from a balance among the gravitational, electrostatic, and hydrodynamic forces acting on it. Our results indicate that the presence of the particle charge reduces the magnitude of the sedimentation velocity of the particle in an uncharged cavity and the presence of the fixed charge at the cavity surface increases the magnitude of the sedimentation velocity of an uncharged particle in a charged cavity. For the case of a charged sphere settling in a charged cavity with equivalent surface charge densities, the net effect of the fixed charges will increase the sedimentation velocity of the particle. For the case of a charged sphere settling in a charged cavity with their surface charge densities in opposite signs, the net effect of the fixed charges in general reduces/increases the sedimentation velocity of the particle if the surface charge density of the particle has a greater/smaller magnitude than that of the cavity. The effect of the surface charge at the cavity wall on the sedimentation of a colloidal particle is found to increase with a decrease in the particle-to-cavity size ratio and can be significant in appropriate situations.  相似文献   

3.
The electrophoretic mobility of a spherical particle coated with a uniformly charged permeable membrane and suspended in a general electrolyte solution is calculated numerically. The network simulation method used makes it possible to solve the problem without any restrictions on the values of the parameters such as the membrane thickness, fixed charge density in the membrane, viscous drag in the membrane, number and valence of the ionic species, and electrolyte concentration. The theoretical model used is similar to the one presented by Ohshima (H. Ohshima, J. Colloid Interface Sci. 228 (2000) 190), except for the inclusion in the force balance equation of an additional term corresponding to the force exerted by the liquid on the core of the moving particle. This inclusion is theoretically proven in the limiting case of a nonconducting suspending medium, in which the equation system can be analytically solved. The results obtained coincide with existing analytical expressions when the electrolyte concentration is high, the membrane is thick, and its resistance to the fluid flow is high.  相似文献   

4.
The electrophoretic mobility of spherical soft particles in concentrated colloidal suspensions is numerically calculated. The particle is modeled as a hard core coated with an ion-penetrable membrane bearing a uniform distribution of fixed charges, while the high particle concentration is taken into account by means of a cell model. The network simulation method used makes it possible to solve the problem without any restrictions on the values of the parameters such as particle concentration, membrane thickness, fixed charge density in the membrane, viscous drag in the membrane, number and valence of ionic species, electrolyte concentration, etc. The theoretical model used is similar to the one presented by Ohshima [H. Ohshima, J. Colloid Interface Sci. 225 (2000) 233], except for the use of the Shilov-Zharkikh, rather than the Levine-Neale, boundary condition for the electric potential, and the inclusion in the force balance equation of an additional term corresponding to the force exerted by the liquid on the core of the moving particle [J.J. López-García, C. Grosse, J. Horno, J. Colloid Interface Sci. 265 (2003) 327]. The obtained results only coincide with existing analytical expressions for low particle concentrations, low particle charge, and when the electrolyte concentration is high, the membrane is thick, and its resistance to the fluid flow is high. This suggests that most interpretations of the electrophoretic mobility of soft particles in concentrated suspensions require numerical calculations.  相似文献   

5.
The body-force-driven migration in a homogeneous suspension of polyelectrolyte molecules or charged flocs in an electrolyte solution is analyzed. The model used for the particle is a porous sphere in which the density of the hydrodynamic frictional segments, and therefore also that of the fixed charges, is constant. The effects of particle interactions are taken into account by employing a unit cell model. The overlap of the electric double layers of adjacent particles is allowed and the relaxation effect in the double layer surrounding each particle is considered. The electrokinetic equations which govern the electrostatic potential profile, the ionic concentration (or electrochemical potential energy) distributions, and the fluid velocity field inside and outside the porous particle in a unit cell are linearized by assuming that the system is only slightly distorted from equilibrium. Using a regular perturbation method, these linearized equations are solved for a symmetrically charged electrolyte with the density of the fixed charges as the small perturbation parameter. An analytical expression for the settling velocity of the charged porous sphere is obtained from a balance among its gravitational, electrostatic, and hydrodynamic forces. A closed-form formula for the sedimentation potential in a suspension of identical charged porous spheres is also derived by using the requirement of zero net electric current. The dependence of the sedimentation velocity and potential of the suspension on the particle volume fraction and other properties of the particle-solution system is found to be quite complicated.  相似文献   

6.
The diffusiophoretic motion of a polyelectrolyte molecule or charged floc in an unbounded solution of a symmetrically charged electrolyte with a uniform prescribed concentration gradient is analytically studied. The model used for the particle is a porous sphere in which the density of the hydrodynamic frictional segments, and therefore also that of the fixed charges, is constant. The electrokinetic equations which govern the electrostatic potential profile, the ionic concentration distributions (or electrochemical potential energies), and the fluid velocity field inside and outside the porous particle are linearized by assuming that the system is only slightly distorted from equilibrium. Using a regular perturbation method, these linearized equations are solved for a charged porous sphere with the density of the fixed charges as the small perturbation parameter. An analytical expression for the diffusiophoretic mobility of the charged porous sphere in closed form is obtained from a balance between its electrostatic and hydrodynamic forces. This expression, which is correct to the second order of the fixed charge density of the particle, is valid for arbitrary values of kappaa and lambdaa, where kappa is the reciprocal of the Debye screening length, lambda is the reciprocal of the length characterizing the extent of flow penetration inside the particle, and a is the particle radius. Our result to the first order of the fixed charge density agrees with the corresponding solution for the electrophoretic mobility obtained in the literature. In general, the diffusiophoretic mobility of a porous particle becomes greater as the hindrance to the diffusive transport of the solute species inside the particle is more significant.  相似文献   

7.
An analytic, approximate expression for the electrostatic interaction between two membranes immersed in an electrolyte solution is derived on the basis of a simple membrane model. This model assumes that the membrane has a surface layer in which charged groups are uniformly distributed and that electrolyte ions can penetrate into the surface layer. The partition coefficients of cations and anions between the solution and the surface layer, which are related to their solubilities in the surface layer, may be different from unity.The electrostatic interaction depends on the ionic partition coefficients between the solution and the surface layer, and the relative permittivity of the surface layer, as well as on the membrane-fixed charges, the electrolyte concentration in the solution, and the surface layer thickness. It is shown, in particular, that even where the charge layer has no fixed charges, the electrostatic interaction force can be produced if the solubilities of cations and anions are different in the surface layer.  相似文献   

8.
A model is presented for the potential distribution across a charged membrane. The membrane-fixed charges are assumed to be distributed through a surface layer of non-zero thickness on the membrane. We treat the surface layer as a different phase from the surrounding solution phase. The potential arises from the membrane-fixed charges and from different solubilities of positive and negative electrolyte ions in the two phases. Equations are presented for the potential distribution, which involve the partition coefficients of electrolyte ions and the relative permittivity of the surface layer.  相似文献   

9.
Diffusion of different electrolytes through a negatively charged (cation-exchange) membrane into distilled water has been studied. It has been established theoretically (with no regard to the presence of diffusion layers) that the integral diffusion permeability coefficient of an electrolyte depends on the diffusion coefficients and the ratio between the charge numbers of a cation–anion pair, the ratio between the density of charges fixed in the membrane and electrolyte concentration, and the averaged coefficient of equilibrium distribution of cation?anion ion pairs in the membrane matrix. It has been found that, when co-ions have a higher mobility, the dependence of diffusion permeability on electrolyte concentration passes through a maximum. Derived equations have been compared with experimental dependences of the diffusion permeability of an MC-40 membrane with respect to different solutions of inorganic 1: 1 and 2: 1 electrolytes. The developed method has been shown to be applicable for describing diffusion of any electrolytes (including asymmetric ones) through arbitrary uniformly charged membranes.  相似文献   

10.
We have studied theoretically the partition equilibrium of a cationic drug between an electrolyte solution and a membrane with pH-dependent fixed charges using an extended Donnan formalism. The aqueous solution within the fixed charge membrane is assumed to be in equilibrium with an external aqueous solution containing six ionic species: the cationic drug (DH(+)), the salt cations (Na(+) and Ca(2+)), the salt anion (Cl(-)), and the hydrogen and hydroxide ions. In addition to these mobile species, the membrane solution may also contain four fixed species attached to the membrane chains: strongly acid sulfonic groups (SO(3)(-)), weakly acid carboxylic groups in dissociated (COO(-)) and neutral (COOH) forms, and positively charged groups (COO...Ca(+)) resulting from Ca(2+) binding to dissociated weakly acid groups. The ionization state of the weak electrolyte groups attached to the membrane chains is analyzed as a function of the local pH, salt concentration, and drug concentration in the membrane solution, and particular attention is paid to the effects of the Ca(2+) binding to the negatively charged membrane fixed groups. The lipophilicity of the drug is simulated by the chemical partition coefficient between the membrane and external solutions giving the tendency of the drug to enter the membrane solution due to hydrophobic interactions. Comparison of the theoretical results with available experimental data allows us to explain qualitatively the effects that the pH, salt concentration, drug concentration, membrane fixed charge concentration, and Ca(2+) binding exert on the ionic drug equilibrium. The role of the interfacial (Donnan) electric potential difference between the membrane and the external solutions on this ionic drug equilibrium is emphasized throughout the paper.  相似文献   

11.
The validity of the hypothesis of electroneutrality outside the double layer of a suspended particle with an applied ac electric field is analyzed. It is shown that the electrolyte solution remains electroneutral for distances greater than a few Debye lengths from the particle surface only when the diffusion coefficients of the two ion species are identical. On the contrary, in the general case, a volume charge density around the particle builds up, which extends to distances that are proportional to the square root of the effective diffusion coefficient value divided by the frequency. These distances can easily attain many particle radii. Numerical results for both uncharged and charged suspended particles are presented, and a correction to existing analytical expressions for the field-induced ion distributions around uncharged particles (J. Phys. Chem. 2004, 108, 8397) is given. While the charge densities far from the particle are usually very weak, it is shown that they strongly contribute to the dipole coefficient value and, therefore, to the calculated values of the permittivity and conductivity increments. The errors that would be committed if these charge densities were ignored, assuming local electroneutrality and determining the dipole coefficient at a few Debye lengths from the particle surface, are analyzed and shown to be substantial.  相似文献   

12.
To reveal the reason of asymmetry of the diffusion permeability of bi-layer electrodialysis membranes the following problems have been solved using the model of "homogeneous porous membrane": - diffusion of non-electrolyte solutions across a bi-layer membrane; - diffusion of electrolyte solutions across a non-charged bi-layer membrane; - diffusion of electrolyte solutions across a charged single layer membrane; - diffusion of electrolyte solutions across a charged bi-layer membrane. It is shown that the main factor responsible for the asymmetry is the difference between absolute values of densities of fixed charges (or so called "exchange capacities") of different layers of a membrane under investigation. Only in this case the ratio of the thickness of the membrane layers as well as the ratio of ion diffusivities contributes also to the asymmetry of the diffusion permeability. In the present review we survey and generalize our previous investigations and propose a new theory of asymmetry of diffusion permeability of bi-layer membranes. We have deduced explicit algebraic formulas for the degree of asymmetry of diffusion permeability of bi-layer membranes under consideration.  相似文献   

13.
Autonomous motions of a spherical nanoparticle in a nanotube filled with an electrolyte solution were investigated using a continuum theory, which consisted of the Nernst-Planck equations for the ionic concentrations, the Poisson equation for the electric potential in the solution, and the Stokes equation for the hydrodynamic field. Contrary to the usual electrophoresis, in which an external electric field is imposed to direct the motion of charged particles, the autonomous motion originates from the self-generated electric field due to the ionic concentration polarization of the liquid medium surrounding an asymmetrically charged particle. In addition to the particle motion, the interaction between the electric field generated and the free charges of the polarized solution induces electroosmotic flows. These autonomous motions of the fluid as well as the particle were examined with focus on the effects of the surface-charge distribution of the particle, the size of the nanotube, and the thickness of the electric double layer, which affected the direction and the speed of the particle significantly.  相似文献   

14.
A charged colloidal particle which is suspended in an electrolyte solution drifts due to an external voltage application. For direct currents, particle motion is affected by two separate mechanisms: electro-osmotic slip associated with the electric field and chemi-osmotic slip associated with the inherent salt concentration gradient in the solution. These two mechanisms are interrelated and are of comparable magnitude. Their combined effect is demonstrated for cation-exchange electrodes using a weak-current approximation. The linkage between the two mechanisms results in an effectively modified mobility, whose dependence on the particle zeta potential is nonlinear. At small potentials, the electro-osmotic mechanism dominates and the particle migrates according to the familiar Smoluchowski mobility, linear in the electric field. At large zeta potentials, chemiosmosis becomes dominant: for positively charged particles, it tends to arrest motion, leading to mobility saturation; for negatively charged particles, it enhances the drift, effectively leading to a shifted linear dependence of the mobility on the zeta potential, with twice the Smoluchowski slope.  相似文献   

15.
The Donnan potential and surface potential of soft particles (i.e., polyelectrolyte-coated hard particles) in an electrolyte solution play an essential role in their electric behaviors. These potentials are usually derived via a continuum model in which fixed charges inside the surface layer are distributed with a continuous charge density. In this paper, for a plate-like soft particle consisting of a cubic lattice of fixed point charges, on the basis of the linearized Poisson–Boltzmann equation, we derive expressions for the electric potential distribution in the regions inside and outside the surface layer. This expression is given in terms of a sum of the screened Coulomb potentials produced by the point charges within the surface layer. We show that the deviation of the results of the discrete charge model from those of the continuous charge model becomes significant as the ratio of the lattice spacing to the Debye length becomes large.  相似文献   

16.
Structural and thermodynamic properties of the restrictive primitive model +1:-1 electrolyte solution adsorbed in a disordered charged media were studied by means of the Grand Canonical Monte Carlo simulation and the replica Ornstein-Zernike theory. Disordered media (adsorbent, matrix) was represented by a distribution of negatively charged hard spheres frozen in a particular equilibrium distribution. The annealed counterions and co-ions were assumed to be distributed within the nanoporous adsorbent in thermodynamic equilibrium with an external reservoir of the same electrolyte. In accordance with the primitive model of electrolyte solutions, the solvent was treated as a dielectric continuum. The simulations were performed for a set of model parameters, varying the net charge of the matrix (i.e., concentrations of matrix ions) and of annealed electrolyte, in addition to the dielectric constant of the invading solution. The concentration of adsorbed electrolyte was found to be lower than the corresponding concentration of the equilibrium bulk solution. This electrolyte "exclusion" depends strongly on the dielectric constant of the invading solution, as also on concentrations of all components. The most important parameter is the net charge of the matrix. Interestingly, the electrolyte rejection decreases with increasing Bjerrum length for the range of parameters studied here. The latter finding can be ascribed to strong inter-ionic correlation in cases where the Bjerumm length is high enough. To a minor extent, the adsorption also depends on the spacial distribution of fixed charges in adsorbent material. The replica Ornstein-Zernike theory was modified to cater for this model and tested against the computer simulations. For the range of parameters explored in this work, the agreement between the two methods is very good. These calculations were also compared with the results of the classical Donnan theory for electrolyte exclusion.  相似文献   

17.
Ionic partition equilibrium on a charged membrane immersed in a mixed electrolyte solution was systematically investigated and several models were established for the determination of partition coefficients.On the basis of theoretical models,the effects of the concentration ratio λof the fixed group(charged density) to reference electrolyte,the concentration ratio η between the two electrolytes existing in the solution and the valence of the electrolyte ions on the partition equilibrium in a positively charged membrane were analyzed and simulated within the chosen parameters in detail.The obtainable results can also be applicable to a sytem of mixed electrolytes contacting with a negatively charged membrane.The theoretical calculations were confirmed with the experimental data of model mixed electrolytes,NaCl HCl and CaCl2 NaCl partitioned in the system of self-made negatively charged membrane-sulphonated poly (phenylene oxide)(SPPO) with different charge densities.  相似文献   

18.
Within the framework of the linearized Debye-Hückel theory an exact solution of the problem of calculating the electric potential caused by discrete fixed charges located at arbitrary positions with respect to a dielectric membrane-solution interface is presented. It takes into account the existence of an electrolyte solution on both sides of the membrane. Asymmetric ionic conditions are allowed for. For some interesting typical cases of fixed charge locations and electrolyte ionic strengths electric potential distributions were calculated and discussed. It is shown that, if the fixed charges were at or in front of the membrane surface, the characteristic distance of the electric potential decay was comparable to the Debye-Hückel length. At the opposite membrane surface only very small electric potentials can be observed. If, however, the fixed charge was placed below the membrane surface the electric potential in lateral direction and towards the other membrane surface largely increased. This effect was very sensitive to the position of the fixed charge with respect to the membrane surface.  相似文献   

19.
Polymeric nanopores with fixed charges show ionic selectivity when immersed in aqueous electrolyte solutions. The understanding of the electrical interaction between these charges and the mobile ions confined in the inside nanopore solution is the key issue in the design of potential applications. The authors have theoretically described the effects that spatially inhomogeneous fixed charge distributions exert on the ionic transport and selectivity properties of the nanopore. A comprehensive set of one-dimensional distributions including the skin, core, cluster, and asymmetric cases are analyzed on the basis of the Nernst-Planck equations. Current-voltage curves, nanopore potentials, and transport numbers are calculated for the above distributions and compared with those obtained for a homogeneously charged nanopore with the same average fixed charge concentration. The authors have discussed if an appropriate design of the spatial fixed charge inhomogeneity can lead to an enhancement of the transport and selectivity with respect to the homogeneous nanopore case. Finally, they have compared the theoretical predictions with relevant experimental data.  相似文献   

20.
For a highly charged particle in an electrolyte solution, counterions are condensed very near the particle surface. The electrochemical potential of counterions accumulated near the particle surface is thus not affected by the applied electric field, so that the condensed counterions do not contribute to the particle electrophoretic mobility. In the present paper we derive an expression for the electrophoretic mobility mu(infinity) of a highly charged spherical particle of radius a and zeta potential zeta in the limit of very high zeta in a solution of general electrolytes with large ka (where k is the Debye-Hückel parameter) on the basis of our previous theory for the case of symmetrical electrolytes (H. Ohshima, J. Colloid Interface Sci. 263 (2003) 337). It is shown that zeta can formally be expressed as the sum of two components: the co-ion component, zetaco-ion, and the counterion component, zetacounterion (where zeta = zetaco-ion + zetacounterion) and that the limiting electrophoretic mobility mu(infinity) is given by mu(infinity) = epsilonr epsilon0 zetaco-ion(infinity)/eta + 0(1/ka), where zetaco-ion(infinity) is the high zeta-limiting form of zetaco-ion, epsilonr and eta are, respectively, the relative permittivity and viscosity of the solution, and epsilon0 is the permittivity of a vacuum. That is, the particle behaves as if its zeta potential were zetaco-ion(infinity), independent of zeta. For the case of a positively charged particle in an aqueous electrolyte solution at 25 degrees C, the value of zetaco-ion(infinity) is 35.6 mV for 1-1 electrolytes, 46.0 mV for 2-1 electrolytes, and 12.2 mV for 1-2 electrolytes. It is also found that the magnitude of mu(infinity) increases as the valence of co-ions increases, whereas the magnitude of mu(infinity) decreases as the valence of counterions increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号