首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 861 毫秒
1.
Evidence of coherent synchrotron radiation has been reported recently at the electron storage rings of several light source facilities. The main features of the observations are (i) a radiation wavelength short compared to the nominal bunch length, and (ii) a coherent signal showing recurrent bursts of duration much shorter than the radiation damping time, but with spacing equal to a substantial fraction of the damping time. We present a model of beam longitudinal dynamics that reproduces these features.  相似文献   

2.
The Compact ERL is an energy recovery LINAC (ERL) test facility that is planned for KEK. The circumference of the recirculation path will be 70 m. Initially, the beam energy will be about 65 MeV and the current about 10 mA. Although the primary purpose of the machine is to aid the development of the key technologies that are essential for building an ultra-brilliant new synchrotron light source based on an ERL, the Compact ERL itself has great potential as an intense source of terahertz radiation. To generate the intense terahertz radiation, an electron bunch of a very short bunch length is required and bunch compression is inevitable. We discuss the parameters of the Compact ERL, present the results of a simulation of bunch compression, and make an estimate of the generated coherent synchrotron radiation.  相似文献   

3.
We present a model describing high power stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The model includes distortion of bunch shape from the synchrotron radiation (SR), which enhances higher frequency coherent emission, and limits to stable emission due to an instability excited by the SR wakefield. It gives a quantitative explanation of several features of the recent observations of CSR at the BESSY II storage ring. We also use this model to optimize the performance of a source for stable CSR emission.  相似文献   

4.
We report the first observation of laser seeding of the storage-ring microbunching instability. Above a threshold bunch current, the interaction of the beam and its radiation results in a coherent instability, observed as a series of stochastic bursts of coherent synchrotron radiation (CSR) at terahertz frequencies initiated by fluctuations in the beam density. We have observed that this effect can be seeded by imprinting an initial density modulation on the beam by means of laser "slicing." In such a situation, most of the bursts of CSR become synchronous with the pulses of the modulating laser and their average intensity scales exponentially with the current per bunch. We present detailed experimental observations of the seeding effect and a model of the phenomenon. This seeding mechanism also creates potential applications as a high-power source of CSR at terahertz frequencies.  相似文献   

5.
Bursts of coherent synchrotron radiation at far-infrared and millimeter wavelengths have been observed at several storage rings. A microbunching instability has been proposed as the source for the bursts. However, the microbunching mechanism has yet to be elucidated. We provide the first evidence that the bursts are due to a microbunching instability driven by the emission of synchrotron radiation in the bunch. Observations made at the Advanced Light Source are consistent with the values predicted by the proposed microbunching model. These results demonstrate a new instability regime for high energy synchrotron radiation sources and could impact the design of future sources.  相似文献   

6.
The time structure of a burst of coherent synchrotron radiation (CSR) emitted from a high-peak-current beam in the electron storage ring NewSUBARU has been investigated. The source of this CSR burst is fine time structure in a bunch produced by longitudinal beam instability. This burst is unstable but very easy to obtain, so it can be used for some experimental applications with appropriate averaging of data. With an averaging period of 10 ms, the fluctuation of the integrated power was about 10%.  相似文献   

7.
Suppression of coherent radiation arising in collisions of relativistic electrons with a short bunch of relativistic particles is predicted. It is shown that this effect must occur in the low-frequency range of emitted photons if radiation has a not purely dipole character. The mechanism of this effect differs from the mechanism of electron synchrotron radiation in the field of the incident particle bunch.  相似文献   

8.
The performance of the far‐infrared (FIR) beamline of the 6 MeV tabletop synchrotron light source MIRRORCLE‐6FIR dedicated to far‐infrared spectroscopy is presented. MIRRORCLE‐6FIR is equipped with a perfectly circular optical system (PhSR) placed around the 1 m‐long circumference electron orbit. To illustrate the facility of this light source, the FIR output as well as its spectra were measured. The optimum optical system was designed by using the ray‐tracing simulation code ZEMAX. The measured FIR intensity with the PhSR in place is about five times higher than that without the PhSR, which is in good agreement with the simulation results. The MIRRORCLE‐6FIR spectral flux is compared with a standard thermal source and is found to be 1000 times greater than that from a typical thermal source at ~15 cm?1. It is also observed that the MIRRORCLE‐6FIR radiation has a highly coherent nature. The broadband infrared allows the facility to reach the spectral range from 10 cm?1 to 100 cm?1. MIRRORCLE‐6FIR, owing to a large beam current, the PhSR mirror system, a large dynamic aperture and small ring energy, can deliver a bright flux of photons in the FIR/THz region useful for broadband spectroscopy.  相似文献   

9.
Coherent enhancement of Smith-Purcell radiation has attracted people's attention not only in adopting a better source but also in beam diagnostics aspect. In this paper, we study the intrinsic mechanism of coherent Smith-Purcell radiation on the basis of the van den Berg model. The emitted power of Smith-Purcell radiation is determined by the bunch profile in transverse and longitudinal directions. For short bunch whose longitudinal pulse length is comparable with the radiation wavelength, it can be concluded approximately that the power is proportional to the square number of electrons per bunch.  相似文献   

10.
We present the concepts for an electron storage ring dedicated to and optimized for the production of stable coherent synchrotron radiation (CSR) over the far-infrared terahertz wavelength range from 200 μm to about 1 cm. CIRCE (Coherent InfraRed CEnter) will be a 66 m circumference ring located on top of the ALS booster synchrotron shielding tunnel and using the existing ALS injector. This location provides enough floor space for both the CIRCE ring, its required shielding, and numerous beamlines. We briefly outline a model for CSR emission in which a static bunch distortion induced by the synchrotron radiation field is used to significantly extend the stable CSR emission towards higher frequencies. This model has been verified with experimental CSR results. We present the calculated CIRCE photon flux where a gain of 6–9 orders of magnitude is shown compared to existing far-IR sources. Additionally, the particular design of the dipole vacuum chamber has been optimized to allow an excellent transmission of these far-infrared wavelengths. We believe that the CIRCE source can be constructed for a modest cost.  相似文献   

11.
The 0.1 THz coherent synchrotron radiation (CSR) was successfully generated in the 90° bending magnet of the compact S-band linac with the achromatic arc section using the ultra-short electron bunch which has the energy of 40 MeV, the bunch charge of about 1nc and the bunch length less than 1 ps (rms). The electron bunch compression of 1 nC electron bunch was achieved less than 1 ps (rms) by controlling the Q-magnets in the achromatic arc section as the bunch length was measured by the rms bunch length monitor.  相似文献   

12.
In an effort to provide a computationally convenient approach to the characterization of partially coherent synchrotron radiation in phase space, a thorough discussion of the minimum dimensionality of the Wigner distribution function for rotationally symmetric sources of arbitrary degrees of coherence is presented. It is found that perfectly coherent, perfectly incoherent and partially coherent sources may all be characterized by a three‐dimensional reduced Wigner distribution function, and some special cases are discussed in which a two‐dimensional reduced Wigner distribution function suffices. An application of the dimension‐reducing formalism to the case of partially coherent radiation from a planar undulator and a circularly symmetric electron beam as can be found in linear accelerators is demonstrated. The photon distribution is convolved over a realistic electron bunch, and how the beta function, emittance and energy spread of the bunch affect the total degree of coherence of the radiation is inspected. Finally the cross spectral density is diagonalized and the eigenmodes of the partially coherent radiation are recovered.  相似文献   

13.
When an electron bunch is compressed in a chicane compressor,the CSR (coherent synchrotron radiation) will induce energy redistribution along the bunch.Such energy redistribution will affect the longitudinal emittance as a direct consequence.It will also excite betatron oscillation due to the chromatic transfer functions,and hence a transverse emittance change.So,it is indispensable for us to find a way to alleviate the CSR-cansed emittance dilution and the bad result of chicane compressor in PKU-FEL.  相似文献   

14.
When an electron bunch is compressed in a chicane compressor, the CSR (coherent synchrotron radiation) will induce energy redistribution along the bunch. Such energy redistribution will affect the longitudinal emittance as a direct consequence. It will also excite betatron oscillation due to the chromatic transfer functions, and hence a transverse emittance change. So, it is indispensable for us to find a way to alleviate the CSR-caused emittance dilution and the bad result of chicane compressor in PKU-FEL.  相似文献   

15.
The dependence on the size and shape of a particle bunch is found for the region of the synchrotron radiation spectrum in the transition from coherent to incoherent radiation.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 9–15, March, 1990.  相似文献   

16.
This paper theoretically proves that an electron storage ring can generate coherent radiation in the THz region using a quick kicker magnet and an AC sextupole magnet. When the vertical chromaticity is modulated by the AC sextupole magnet, the vertical beam collective motion excited by the kicker produces a wavy spatial structure after a number of longitudinal oscillation periods. The radiation spectral distribution was calculated from the wavy bunch parameters at the Hefei Light Source(HLS). When the electron energy is reduced to 400 Me V, extremely strong coherent synchrotron radiation(CSR) at 0.115 THz should be produced.  相似文献   

17.
M M HAQUE  A MOON  T HIRAI  H YAMADA 《Pramana》2011,76(2):351-355
The tabletop storage ring, 6 MeV MIRRORCLE, is dedicated to hard X-ray imaging as well as far-infrared (FIR) spectroscopy. In spite of low electron energy, the 6 MeV MIRRORCLE generates hard X-rays ranging from 10 keV up to its electron energy and milliwatt order sub-millimetre range FIR rays. Bremsstrahlung is the mechanism for the hard X-ray generation. Images produced with 11× geometrical magnification display a sharply enhanced edge effect when generated using a 25 mm rod electron target. Bright far-infrared is generated in the same way using a conventional synchrotron light source, but with MIRRORCLE the spectral flux is found to be ∼1000 times greater than that of a standard thermal source. Partially coherent enhancement is observed in the case of FIR output.  相似文献   

18.
Measurements of the beam emittance during bunch compression in the CLIC Test Facility (CTF-II) are described. The measurements were made with different beam charges and different energy correlations versus the bunch compressor settings which were varied from no compression through the point of full compression and to overcompression. Significant increases in the beam emittance were observed with the maximum emittance occurring near the point of full (maximal) compression. Finally, evaluation of possible emittance dilution mechanisms indicates that coherent synchrotron radiation was the most likely cause.  相似文献   

19.
The generation of brilliant, stable, and broadband coherent synchrotron radiation (CSR) in electron storage rings depends strongly on ring rf system properties such as frequency and gap voltage. We have observed intense coherent radiation at frequencies approaching the THz regime produced by the MIT-Bates South Hall Ring, which employs a high-frequency S-band rf system. The measured CSR spectral intensity enhancement with 2 mA stored current was up to 10,000 times above background for wave numbers near 3 cm(-1). The measurements also uncovered strong beam instabilities that must be suppressed if such a very high rf frequency electron storage ring is to become a viable coherent THz source.  相似文献   

20.
在进行束团压缩时,相干同步辐射导致束团能量再分配,这会引入一定类型的非线性,目前普遍认为该非线性会导致束团发射度的急剧增加.本文通过模拟计算发现该结论只在一定条件下成立,同时还发现相干同步辐射引入固定类型的非线性,在特定参数下,该非线性能在一定程度上抵消束团原有的非线性,最终可能对束团品质有改善作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号