首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
李晓薇 《中国物理 B》2009,18(12):5491-5495
This paper applies the Bogoliubov--de Gennes equation and the Blonder--Tinkham--Klapwijk approach to study the oscillatory behaviour of differential conductance in a normal metal/insulator/metal/d-wave superconductor junction carrying a supercurrent Is. We find that (i) a three-humped structure appears at a nearly critical supercurrent Is and z ≈ 0.5 for the normal metal/insulator/metal/d_x2 + y2-wave superconductor junction; (ii) the zero-bias conductance peak splits into two peaks with sufficiently large applied current for the normal metal/insulator/metal/dxy-wave superconductor junction; (iii) the conductance spectrum exhibits oscillating behaviour with the bias voltage and the peaks of the resonances are suppressed by increasing supercurrent Is.  相似文献   

2.
When two superconductors are connected by a weak link a supercurrent flows determined by the difference in the macroscopic quantum phases of the superconductors. Originally, this phenomenon was discovered by Josephson for the case of a weak link formed by a thin tunnel barrier. The supercurrent I is related to the phase difference ϕ through the Josephson current–phase relation, I = Icsin ϕ, with Ic, the critical current, depending on the properties of the weak link. A similar relation holds for weak links consisting of a normal metal, a semiconductor or a constriction . In all cases, the phase differenceϕ =  0 when no supercurrent flows through the junction, and ϕ increases monotonically with increasing supercurrent until the critical current is reached. Using nanolithography techniques we have succeeded in making and studying a Josephson junction with a normal metal weak link, in which we have direct access to the microscopic current-carrying states inside the link. We find that the fundamental Josephson relation can be changed fromI = Icsin ϕ toI = Icsin(ϕ + π), i.e. to a π -junction, by suitably controlling the energy distribution of the current-carrying states in the normal metal. This fundamental change in the way these Josephson junctions behave has potential implications for their use in superconducting electronics as well as (quantum) logic circuits based on superconductors.  相似文献   

3.
In this communication we show that the Josephson supercurrent in Ta--induced surface-layer UBe junction can be described in an unconventional even parity model. The key feature is the appearance of the pseudogap near the Fermi energy at low temperatures. This makes the heavy fermion system unique. Our theory fits the experimental result satisfactorily.  相似文献   

4.
5.
《Physics letters. A》1998,245(5):477-478
We present an analysis of the heat capacity of a superconductor carrying a constant applied electric current. We find that the heat capacity diverges with an exponent of 0.5 at a depressed transition temperature. This result is similar to a recent calculation of the heat capacity of superfluid helium under an applied heat current.  相似文献   

6.
A field theoretic approach is developed to investigate the profile and spectrum of subgap states in a superconductor subject to a weak magnetic impurity potential. Such states are found to be associated with spatially inhomogeneous instanton configurations of the action.  相似文献   

7.
Tunneling density of states measurements of disordered superconducting Al films in high Zeeman fields reveal a significant population of subgap states which cannot be explained by standard BCS theory. We provide a natural explanation of these excess states in terms of a novel disordered Larkin-Ovchinnikov phase that occurs near the spin-paramagnetic transition at the Chandrasekhar-Clogston critical field. The disordered Larkin-Ovchinnikov superconductor is characterized by a pairing amplitude that changes sign at domain walls. These domain walls carry magnetization and support Andreev bound states that lead to distinct spectral signatures at low energy.  相似文献   

8.
The Bogoliubov equations for the quasi-particle excitations of an isolated vortex line in a pure type-II superconductor are solved by means of a method due to Bardeenet al. The low lying energy levels of the bound states are found to have the form of Landau levels where the effective field is determined by the pair potential and the magnetic field in the core region of the vortex. From the solutions of the continuum states of high energy simple expressions for the phase shifts are derived. The contributions of the continuum states to the pair potential and the current density are calculated. The pair potential is shown to tend to the BCS gap parameter, and thus to be serf-consistent, at large distances from the vortex axis.  相似文献   

9.
The semiclassical theory of proximity effects predicts a gap E g~?D/L 2 in the excitation spectrum of a long diffusive superconductor/normal-metal/superconductor (SNS) junction. Mesoscopic fluctuations lead to anomalously localized states in the normal part of the junction.As a result, a nonzero, yet exponentially small, density of states (DOS) appears at energies below E g. In the framework of the supermatrix nonlinear σ model, these prelocalized states are due to the instanton configurations with broken supersymmetry. The exact result for the DOS near the semiclassical threshold is found, provided the dimensionless conductance of the normal part G N is large. The case of poorly transparent interfaces between the normal and superconductive regions is also considered. In this limit, the total number of subgap states may be large.  相似文献   

10.
Three generalized Eliashberg equations for the gap, renormalization and chemical potential shift have been solved in order to study the effects of energy dependence in the electronic density of states (EDOS) on the tunneling characteristics. Inversion of the tunneling characteristics within the context of the usual Eliashberg theory (with flat EDOS) shows that the effects of a nonconstant EDOS cannot always be described by some effective values of the usual parameters in the standard theory.  相似文献   

11.
Andreev bound states in monoatomic superconductor–ferromagnet (S/F) superlattices are studied theoretically, assuming tunneling between S and F layers in perpendicular direction. Andreev reflection at S/F interfaces is strongly affected by the exchange interaction h in F layers. In the ground state, only for h≠0 zero-energy states (ZES) are formed on S and F layers. For h=0, corresponding to superconductor–normal metal (S/N) superlattices, ZES may appear in the nonequilibrium phase, =π. This is found both for s-wave and d-wave symmetry of the order parameter in S. The conditions for ZES are obtained as a function of h, of the transfer integral t for movement of quasiparticles (QPs) between S and F layers, and of the corresponding ground state phase difference eq between two neighboring S layers.  相似文献   

12.
郝宁  胡江平 《物理学报》2018,67(20):207101-207101
铁基超导体和拓扑量子材料是近年来凝聚态物理两个重要的前沿研究方向.铁基超导体中是否能衍生出非平庸的拓扑现象是一个非常有意义的问题.本文从晶体对称性、布里渊区高对称点附近的有效模型以及自旋轨道耦合相互作用三个方面具体分析了铁基超导的电子结构的基本特点.在此基础上,重点阐述铁基超导的正常态、临近超导的长程有序态以及超导态中非平庸的拓扑量子态是如何衍生的;具体介绍了相关的理论模型以及结果,回顾了相关的实验进展,展望了该领域的发展前景.  相似文献   

13.
We study the local density of vibrational states of a disordered binary chain using a renormalization approach suitable for the alloy problem. We include isotopic and spring constant disorder. Short range order effects in the alloy are taken into account in the pair approximation. We present some numerical results for the case of spring constant disorder and discuss their relevance for the interpretation of neutron scattering experiments in some metallic amorphous systems.  相似文献   

14.
Conductance measurements of tunnel junctions formed between a superconductor (thin A1) and a ferromagnetic metal (Ni) in a magnetic field are used to resolve the tunneling conductance into conductances for each of the electron spin directions. This resolution can be used to obtain the spin densities of states of high field superconductors for which spin scattering processes are important.  相似文献   

15.
Localized electron states in oxides on metal surfaces hybridize with conduction electrons leaking into the oxide and form so a metallic layer and a new type of surface state. For a superconductor such surface states weaken the superconductivity. Because these surface states extend into the oxide, they cause an enhanced tunnel conductivity, which is finite below the gap voltage due to resonance tunneling via the surface states below the gap.  相似文献   

16.
17.
We discuss some of the basic theoretical aspects of current-carrying states in superconducting superlattices with tunnel barriers in the mesoscopic regime, when p0  1  a  ξ0(a is the superconducting layer thickness, p0is the Fermi momentum, ξ0is the BCS coherence length and  =  1). We establish the necessary conditions for the observation of the classical Josephson effect (with sinusoidal current–phase dependence) and derive self-consistent analytical expressions for the critical Josephson current. These expressions are proportional to the small factor a / ξ0and have unusual temperature dependence as compared with the single-junction case. For certain parameter values, the superconducting gap exhibits an exponential decrease due to pair-breaking effect of the supercurrent. The supercurrent can completely destroy the superconductivity of the system above a certain characteristic temperature T * . In this paper, we also study the effect of intrabarrier exchange interactions. We show that this effect is strongly enhanced compared with the single-junction case and can manifest itself in an exponential decrease of the critical temperature.  相似文献   

18.
The vibrational density of states of a hyperquenched and an annealed glass has been measured using nuclear inelastic scattering. The hyperquenched sample shows a higher number of vibrational states in the low-energy region with respect to the annealed glass. It reveals, however, lower density and sound velocity and, therefore, smaller Debye energy. After rescaling the energy axes in Debye energy units and area renormalization, the density of states of both samples becomes identical. Thus, the effect of quenching is described by the transformation of the continuous medium.  相似文献   

19.
20.
Zhen-Zhen Huang 《中国物理 B》2022,31(10):107101-107101
We study the Kondo screening of a spin-1/2 magnetic impurity coupled to a superconductor, which is fabricated by combination of an s-wave superconductor, a ferromagnet and a semiconductor with Rashba spin—orbit coupling (RSOC). The proximity induced superconducting states include the s-wave and p-wave pairing components with the aids of RSOC, and the ferromagnet induces a Zeeman field which removes the spin degeneracy of the quasiparticles in the triplet states. Thus, the Kondo screening of magnetic impurity involves the orbital degrees of freedom, and is also affected by the Zeeman field. Using the variational method, we calculate the binding energy and the spin—spin correlation between the magnetic impurity and the electrons in the coexisting s-wave and p-wave pairing states. We find that Kondo singlet forms more easily with stronger RSOC, but Zeeman field in general decreases the binding energy. The spin—spin correlation decays fast in the vicinity of the magnetic impurity. Due to the RSOC, the spatial spin—spin correlation becomes highly anisotropic, and the Zeeman field can induce extra asymmetry to the off-diagonal components of the spin—spin correlation. Our study can offer some insights into the studies of extrinsic topological superconductors fabricated from the hybrid structures containing chains of magnetic impurities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号