首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
A scanning tunneling microscopy study reveals the removal of P and In atoms at intrinsic surface sites of InP (110)-(1x1) through an electronic mechanism under ns-laser excitation. Femtosecond nonresonant ionization spectroscopy detects desorption of P and In atoms associated directly with the bond rupture, and shows their translational energies characteristic of electronic bong breaking. The rate of P-atom removal is 4 times higher than that of In-atom removal, revealing a prominent species-dependent effect of structural instability under electronic excitation on semiconductor surfaces.  相似文献   

3.
4.
Nickel disilicide/silicon (001) interfaces were investigated by aberration corrected scanning transmission electron microscopy (STEM). The atomic structure was derived directly from the high spatial resolution high angle annular dark field STEM images without recourse to image simulation. It comprises fivefold coordinated silicon and sevenfold coordinated nickel sites at the interface and shows a 2 x 1 reconstruction. The proposed structure has not been experimentally observed before but has been recently predicted theoretically by others to be energetically favored.  相似文献   

5.
An electron beam (EB) irradiation effect on the Si(001)-c(4 x 2) surface was investigated by using low-energy electron diffraction. Quarter-order spots become dim and streaky by EB irradiation below approximately 40 K, indicating a disordering in the c(4 x 2) arrangement of buckled dimers. A quantitative analysis of decreasing rates of the spot intensity at various conditions of beam current, beam energy, and substrate temperature leads to a proposal for a mechanism of the disordering in the buckled-dimer arrangement in terms of electronic excitation, electron-phonon coupling, and carrier concentration.  相似文献   

6.
7.
徐彭寿  李拥华  潘海斌 《物理学报》2005,54(12):5824-5829
利用缀加平面波加局域轨道(APW+LO)的第一性原理方法计算了β-SiC(001)-(2×1)表面的原子及电子结构. 原子结构的计算结果表明,与Si(001)-(2×1) 表面的非对称性Si二聚体模型不同,β-SiC(001)-(2×1)表面为对称性的Si二聚体模型,其二聚体的Si原子间键长也较大,为0.269nm. 电子结构的计算结果表明,在费米能级处有明显的态密度,因此β-SiC(001)-(2×1)表面呈金属性. 在带隙附近存在四个表面态带,其中的两个占有表面态带已由价带的同步辐射光电子能谱实验得到证实. 关键词: 碳化硅 缀加平面波加局域轨道方法 原子结构 电子结构  相似文献   

8.
9.
10.
11.
12.
We present a first-principles calculation of the quasiparticle electronic structure of ethylene adsorbed on the dimer reconstructed Si(001)-(2x1) surface. Within the GW approximation, the self-energy corrections for the adsorbate states are found to be about 1.5 eV larger than those for the states derived from bulk silicon. The calculated quasiparticle band structure is in excellent agreement with photoemission spectra. Finally, the effects of the quasiparticle corrections on the scanning tunneling microscope images of the adsorbed molecules are shown to be important as the lowering of the C2H4 energy levels within GW strongly reduces their tunneling probability.  相似文献   

13.
14.
15.
16.
The reconstructed anatase TiO2(001) surface has been investigated by low-energy electron diffraction (LEED), x-ray photoelectron spectroscopy (XPS), and angle-resolved mass spectroscopy of recoiled ions (AR-MSRI). Prior investigations have observed or considered only a (1x1) unreconstructed termination for this surface with no detailed structural analysis. Our LEED results indicate a previously unobserved two-domain (1x4) reconstruction after sputtering and annealing the (1x1) surface. The XPS data for this reconstruction indicate the presence of only Ti4+. Simulations of the AR-MSRI experimental data indicate a best fit for a microfaceted surface, revealing both (103) and (1;03) surface planes.  相似文献   

17.
18.
19.
20.
A combined experimental and first principles study of the (2x1)-reconstructed rutile TiO2(011) surface is presented. Our results provide evidence that the surface structure is described by a model that includes onefold coordinated (titanyl) oxygen atoms giving rise to double bonded Ti=O species. These species should play a special role in the enhanced photocatalytic activity of the TiO2(011) surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号