首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrathin epitaxial Fe films on Cu(1 0 0) with perpendicular magnetization have been used as templates for the preparation of FCC Fe/Cu/Fe trilayers. The magnetic anisotropy and the coupling of these films have been studied by in-situ magneto optical Kerr effect measurements and Kerr microscopy. The magnetic coupling of both Fe layers is found to be dominated by magnetostatic interaction. Adsorbate-induced spin reorientation in the top layer also causes spin reorientation in the bottom layer. The governing role of the Fe-vacuum interface for the magnetism of the whole trilayer is demonstrated.  相似文献   

2.
The correlation between an ad-layer-induced spin reorientation transition (SRT) and the ad-layer-induced structural relaxation is investigated by combined in situ surface x-ray diffraction and magneto-optical Kerr-effect experiments on Ni/Fe/Ni(111) layers on W(110). The Fe-induced SRT from in-plane to out-of-plane, and the SRT back to in-plane upon subsequent coverage by Ni, are each accompanied by a small lattice relaxation of at most 0.002 A. Such a small strain variation excludes a magnetoelasticity driven SRT, and we suggest the interface anisotropy as a possible driving force.  相似文献   

3.
An in-plane spin reorientation transition in thin ferromagnetic films is discussed in terms of the thermodynamics of inhomogeneous low-dimensional systems based on a Néel sublattices concept while using a spin 1 Heisenberg Hamiltonian. The model allows us to investigate in a straightforward manner the layer-dependent phenomena. In this context, we propose a model of noncollinear magnetization structure based on the appropriate distribution of the anisotropy parameters inside the Fe films on W(110). The spin reorientation transition originates at the Fe/W(110) interface and proceeds via noncollinear magnetization structure toward the surface with increasing film thickness in accordance with the experimental findings. The temperature-driven spin reorientation transition in freestanding Fe films and in Fe/W(110) systems is also discussed in detail.  相似文献   

4.
The magnetic domain configurations of Fe 3d spins in Fe/CeH2 multilayers were measured by soft X-ray resonant magnetic scattering. The interface region could be probed by setting up X-ray standing waves due to the multilayer periodicity. By resolving first- and second-order magnetic scattering contributions, we show that the latter probe directly the magneto-crystalline anisotropy which is dominated by the Fe interface layers causing a spin reorientation transition when the temperature is lowered. Received: 30 May 2001 / Accepted: 4 July 2001 / Published online: 5 October 2001  相似文献   

5.
We report an experimental approach to separate temperature dependent reversible and irreversible contributions to the perpendicular magnetic anisotropy of Fe films grown at low temperatures on Cu(001) substrates. The surface anisotropy K(S)(T) is found to decrease linearly with temperature, causing a thermally induced spin reorientation into the plane. The irreversible shift of the spin reorientation transition and the coercivity of the iron films are directly correlated to the increasing Fe island size during annealing. The increased coercivity is discussed in terms of domain wall energy inhomogeneities provided by the islands.  相似文献   

6.
通过x射线衍射分析和磁性测量对(Nd1-xErx)3Fe273Ti17化合物的结构与磁性进行了研究.单相(Nd1-xErx)3Fe273Ti17化合物的成相范围为x=00—05之间,所有化合物均属于单斜晶系、Nd3(Fe,Ti)29型结构和A2/m空间群.着Er含量的增加,(Nd1-xErx)3Fe273Ti17化合物的晶胞体积、居里温度TC和5K下的饱和磁化强度Ms均单调减小,而5K下的饱和磁化强度Ms和Er含量的关系与稀释模型所描述的结果相一致.(Nd1-xErx)3Fe273Ti1 关键词: (Nd1-xErx)3Fe273Ti17化合物 磁晶各向异性 自旋重取向 磁相图  相似文献   

7.
Highly accurate soft-XMCD data recorded on a Nd2Fe14B single crystal, through the spin reorientation transition show that the average Fe orbital moment (a) is proportional to the macroscopic Fe anisotropy constant, and (b) diverges 15 K below the reorientation transition temperature. This divergence is indicative of a critical behavior and it is related to a tetragonal distortion. These results give experimental evidence of the mutual dependence between orbital moment, macroscopic magnetic anisotropy, and tetragonal distortion. Furthermore, it is argued that the critical behavior of the orbital moment is at the origin of similar divergences previously observed in Mossbauer and Hall-effect data.  相似文献   

8.
合成了ErFe29-x-yCoxMy化合物(M=Cr, V, Ti, Mn, Ga, Nb )并用x射线衍射和磁测量等手段研究了它们的结构和磁性. 发现Fe基Er(Fe,M)29化合物结晶成哑铃对Fe-Fe无序替代的Th2Ni17型结构(P63/mmc空间群)而不能形成Nd3(Fe,Ti)29型结构,因此其化学式也可以用Er2-n(Fe,M)17+2n (n=0.2)表示. 当ErFe29化合物中部分Fe原子被M原子所取代时,其居里温度均有一定程度的提高. 所有Er(Fe,M)29化合物在室温均为易面型各向异性. 当Er(Fe,M)29 (M=Cr, V)中的部分Fe原子被Co原子取代且Co原子数与Fe原子数达到一定比值时,得到一个单斜结构的新相. 磁测量表明ErFe19.5Co6V3.5在室温可能为单轴各向异性,在162K出现自旋重取向,其各向异性由易轴型变为易面型. 在5K下于难磁化方向磁化时观察到一个一级磁化过程(FOMP). 关键词: 稀土金属间化合物 晶体结构 磁晶各向异性  相似文献   

9.
Magnetic stripe domains in the spin reorientation transition region are investigated in (Fe/Ni)/Cu(001) and Co/Cu/(Fe/Ni)/Cu(001) using photoemission electron microscopy. For (Fe/Ni)/Cu(001), the stripe domain width decreases exponentially as the Fe/Ni film approaches the spin reorientation transition point. For Co/Cu/(Fe/Ni)/Cu(001), the Fe/Ni stripe orientation is aligned with the Co in-plane magnetization, and the stripe domain width decreases exponentially with increasing the interlayer coupling between the Fe/Ni and Co films. By considering magnetic stripes within an in-plane magnetic field, we reveal a universal dependence of the stripe domain width on the magnetic anisotropy and on the interlayer coupling.  相似文献   

10.
王得来  崔明启  杨栋亮  董俊才  徐伟 《中国物理 B》2016,25(10):107501-107501
In this work, the magnetocrystalline anisotropy energy(MAE) on the surface of Fe_(33)Co_(67) alloy film is extracted from x-ray magnetic linear dichroism(XMLD) experiments. The result indicates that the surface MAE value is negatively correlated with thickness. Through spectrum calculations and analysis, we find that besides the thickness effect, another principal possible cause may be the shape anisotropy resulting from the presence of interface roughness. These two factors lead to different electron structures on the fermi surface with different exchange fields, which produces different spin–orbit interaction anisotropies.  相似文献   

11.
The reported double transition in the series Ce(Fe1–xCox)2 for x<0.3 has been shown to be due to spin reorientation from Mossbauer measurements at57Fe. It is suggested that the competing interactions with randomly substitution of Fe by Co atoms causes a quasi random freezing which results in abrupt loss of magnetization.  相似文献   

12.
Using the full potential linearized augmented plane wave (FLAPW) method, thickness dependent magnetic anisotropy of ultrathin FeCo alloy films in the range of 1 monolayer (ML) to 5 ML coverage on Pd(0 0 1) surface has been explored. We have found that the FeCo alloy films have close to half metallic state and well-known surface enhancement in thin film magnetism is observed in Fe atom, whereas the Co has rather stable magnetic moment. However, the largest magnetic moment in Fe and Co is found at 1 ML thickness. Interestingly, it has been observed that the interface magnetic moments of Fe and Co are almost the same as those of surface elements. The similar trend exists in orbital magnetic moment. This indicates that the strong hybridization between interface FeCo alloy and Pd gives rise to the large magnetic moment. Theoretically calculated magnetic anisotropy shows that the 1 ML FeCo alloy has in-plane magnetization, but the spin reorientation transition (SRT) from in-plane to perpendicular magnetization is observed above 2 ML thickness with huge magnetic anisotropy energy. The maximum magnetic anisotropy energy for perpendicular magnetization is as large as 0.3 meV/atom at 3 ML film thickness with saturation magnetization of . Besides, the calculated X-ray magnetic circular dichroism (XMCD) has been presented.  相似文献   

13.
The effects of Al substitution for Fe on the structure, magnetics, magnetostriction, anisotropy and spin reorientation of a series of Tb0.3Dy0.6Pr0.1(Fe1-xAlx)1.95 alloys (x=0.05, 0.1, 0.15, 0.2, 0.25, 0.3) at room temperature have been investigated. The alloys of Tb0.3Dy0.6Pr0.1(Fe1-xAlx)1.95 substantially retain MgCu2-type C-15 cubic Laves phase structure when x0.2. The mixed phases appear with x = 0.2, and cubic Laves phase decreases with increasing x. The magnetostriction of the Tb0.3Dy0.6Pr0.1(Fe1-xAlx)1.95 alloys decreases drastically with increasing x and the giant magnetostrictive effect disappears for x 0.15. Fortunately, a small amount of Al substitution is beneficial to a decrease in the magnetocrystalline anisotropy. The spin reorientation temperature decreases with increasing x. The analysis of the Mssbauer spectra indicates that the easy magnetization direction in the {110} plane deviates slightly from the main axis of symmetry with the increase of Al concentration x, namely, spin reorientation, resulting in the change of macroscopical magnetic properties and magnetostriction. The hyperfine field decreases, but the isomer shifts increases with Al concentration increasing and the quadruple splitting QS shows a weak concentration dependence.  相似文献   

14.
The effect of ⅢA metal and transition metal T substitution for Fe on crystal structure, magnetostriction and spontaneous magnetostriction, anisotropy and spin reorientation of a series of polycrystalline Tb0.3Dy0.7(Fe0.9T0.1)1.95 (T = Mn, Fe, Co, B, Al, Ga) alloys at room temperature were investigated systematically. It was found that the primary phase of the Tb0.3Dy0.7(Fe0.9T0.1)1.95 alloys is the MgCu2-type cubic Laves phase structure for different substitution. The magnetostriction λs decrases greatly for the substitution of IIIA metal B, Al and Ga, but is saturated more easily for Al and Ga substitution, showing that the Al and Ga substitution is beneficial to a decrease in the magnetocrystalline anisotropy of Tb0.3Dy0.7(Fe0.9T0.1)1.95 alloys. However, the substitution of transition metal Mn and Co decreases slightly the magnetostriction λs. It was also found that the effect of different substitutions on the spontaneous magnetostriction λ111 is distinct. The analysis of the Mossbauer spectra indicates that the easy magnetization direction in the {110} plane deviates slightly from the main axis of symmetry for Al and Ga substitution, namely spin reorientation, but it does not change evidently for B, Mn and Co substitution.  相似文献   

15.
The anisotropy of the spin-orbit interaction, , in vicinal Co films has been measured using x-ray magnetic linear dichroism (XMLD). A linear increase in with Co step density is found using a new sum rule and represents the first experimental confirmation that XMLD probes the magnetocrystalline anisotropy energy (MAE). X-ray magnetic circular dichroism is used to confirm that the XMLD arises from changes in the local step-edge electronic structure. The XMLD sum rule gives a larger MAE compared to macroscopic values and is discussed with respect to other local probes of the MAE.  相似文献   

16.
The magnetic anisotropy energy (MAE) of 3d transition-metal wires, stripes, and films is calculated self-consistently as a function of stripe width and film thickness. The magnetization-reorientation transitions in stripes are determined along the crossover from the mono-atomic one-dimensional chain to the two-dimensional monolayer. It is shown that the MAE oscillates as a function of stripe width and depends strongly on the considered transition metal. The reorientation transitions in Co films deposited on a highly polarizable substrate such as Pd are discussed. A local analysis of the layer-resolved MAEs provides new insights into the off-plane magnetization observed in Pd-capped Co films on Pd(111). The interfaces responsible for the stability of the off-plane easy axis are characterized microscopically. An unexpected internal magnetic structure of the Co–Pd interfaces is revealed in which the magnetic moments and spin–orbit interactions at Pd atoms play a crucial role. The nature of the reorientation transition from perpendicular to in-plane magnetization with increasing film thickness is studied by means of full-vectorial calculations. The existence of a spin-canted phase at intermediate film thickness is demonstrated.  相似文献   

17.
For the first time the 57Fe NMR spectrum of the nuclei in the domains of a YFeO3 single crystal has been observed. The splitting of the lines by an external magnetic field allows a very exact determination of the spin orientation of the four Fe sublattices. The ferro- and antiferromagnetic canting angles in zero field are φ = 12.3 mrad and ψ = 14.0 mrad, respectively. The field-induced spin reorientation can be described using the model of antisymmetric exchange interaction including second- and fourth-order anisotropy constants.  相似文献   

18.
We have used x-ray magnetic circular dichroism, which offers a unique capability to give element specific information at submonolayer sensitivity, to determine the spin and orbital magnetic moments at the Fe/GaAs(100) interface. The wedge samples, grown by molecular beam epitaxy at room temperature, consisted of 0.25-1 monolayer (ML) Fe on GaAs(100)-4x6 capped with 9 ML Co and have shown Fe spin moments of (1.84-1.96)micro(B) and a large orbital enhancement. Our results demonstrate unambiguously that the Fe/GaAs(100)-4x6 interface is ferromagnetic with a bulklike spin moment, which is highly promising for spintronics applications.  相似文献   

19.
Polarization dependent x-ray photoemission electron microscopy was used to investigate the spin structure near the surface of an antiferromagnetic NiO(001) single crystal in response to the deposition of a thin ferromagnetic Co film. For the cleaved NiO surface we observe only a subset of bulklike antiferromagnetic domains which is attributed to minimization of dipolar energies. Upon Co deposition a spin reorientation near the NiO interface occurs, with the antiferromagnetic spins rotating in plane, parallel to the spins of the Co layer. Our results demonstrate that the spin configuration in an antiferromagnet near its interface with a ferromagnet may significantly deviate from that in the bulk antiferromagnet.  相似文献   

20.
利用x射线衍射和磁测量研究了不同稳定元素Co以及Ti,V和Cr替代对Nd3Fe29-x-yCoxMy(M=Ti,V,Cr)化合物结构和磁性的影响.研究发现:每一个稳定元素都有一替代量极限,在此极限以内所有化合物均为Nd3(Fe,Ti)29型结构,A2/m空间群.不同稳定元素的溶解极限不同.Co的替代量与稳定元素有关,当以Cr作为稳定元素时,Cr的替代量随着Co含量的提高而提高 关键词: 3(Fe')" href="#">Nd3(Fe Co 29')" href="#">M)29 结构 磁性  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号