首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Could go either way: The addition of nucleophiles to the parent 1,2-dihydro-1,2-azaborine and subsequent quenching with an electrophile generates novel substituted 1,2-azaborine derivatives. Mechanistic studies are consistent with two distinct nucleophilic aromatic substitution pathways depending on the nature of the nucleophile.  相似文献   

2.
Functionalized 1,2-oxazinanes are interesting and valuable heterocycles with potential applications in synthetic and medicinal chemistry. A straightforward strategy for quick access to unprecedented trans-4-hydroxyl-5-azido/cyano/amino 1,2-oxazinanes are developed: N-COR 3,6-dihydro- 1,2-oxazine oxides are prepared with ease from related dihydro- 1,2-oxazines and opened by nucleophiles TMSN3, TMSCN and aryl/alkyl amines. Appropriate Lewis acid catalysts are found playing a vital role for both reaction rate and regioselectivity. The N-COR group can be removed under mild conditions to provide highly desirable NH 1,2-oxazinanes inaccessible via previous methods.  相似文献   

3.
In this study, glycerol-1,2-carbonate was employed as a convenient reagent for the synthesis of more complex pyrazole-containing heterocyclic systems. 3-O-Tosylated glycerol-1,2-carbonate (TGC) was used for alkylation of NH-pyrazolecarboxylates. The obtained N-glycerylated pyrazoles were further treated with diverse nucleophiles for 2-oxo-1,3-dioxolane ring cleavage. The synthesized 1-(2,3-dihydroxypropyl)-1H-pyrazole-5-carboxylates were subsequently hydrolyzed and treated with p-toluenesulfonic acid, yielding a series of 6-(hydroxymethyl)-6,7-dihydro-4H-pyrazolo[5,1-c][1,4]ox-azin-4-ones.  相似文献   

4.
Summary Unlike 2-(3,4-dihydro-6-methoxy-1-naphthyl)ethenol acetate (I) [4-(2-acetoxyvinyl)-1,2-dihydro-7-methoxy-naphthalene], the diene of analogous structure -1,2-dihydro-7-methoxy-4-vinylnaphthalene (III)-in condensation with 3,5-dimethyl-3-cyclopentene-1,2-dione (II) forms an adduct (IV) which contains a 15- and not a 17-keto group. The orientation in the diene condensation is determined by the presence, or absence, of an electronegative substituent in the 1-position of the diene of type (III).Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 6, pp. 1058–1061, June, 1965  相似文献   

5.
Treatment of 3-(2-formyl-1H-pyrrol-1-yl)-2-thiophenecarboxamide by various nucleophiles like methyl ketones, amines, alcohols, thiols or acetates led to new 5,6-dihydro-4H-pyrrolo[1,2-a]thieno-[2,3-f][1,4]diazepines.  相似文献   

6.
Hydroxylamine reacts with 1-alkyl-1,2-dihydro-3,1-benzothiazine-4thiones ( 1 ), giving 1-alky1-3-hydroxy-2,3-dihydro-1H-quinazoline-4-thiones ( 2 ). The same reagent, in neutral medium, converts 1-aryl-1,2-dihydro-3,1-benzothiazine-4-thiones ( 3 ) into 1-aryl-4-hydroxyimino-1,4-dihydro-2H-3,1-benzothiazines ( 4 ). In acidic medium, the same starting materials lead to 1-aryl-3-hydroxy-2-3-dihydro-1H-quinazoline-4-thiones ( 5 ). genrally with some quantity of the isomer 4 . Thiones 2 and 5 , as well as oximes 4 , heated at 200°, decomopose, yielding, in varying proportions, 1H-quinazoline-4-thiones ( 6 or 7 ), 1H-quinazoline-4-ones ( 9 ) and 2,3-dihydro-1H-quinazoline-4-thiones ( 11 ). Reacting with methyliodide, 1H-quinazoline-4-thiones ( 7 ) give 4-methylthioquinazolin-1-ium iodidies ( 12 ) which can be hydrolysed into 1H-quinazolin-4-ones ( 9 ). The latter are also obtained by reacting benzonitrile N-oxide with the corresponding thiones. 1-Aryl-1 H-quinazoline-4-thiones ( 7 ) react readily with nitrogen nucleophiles XNH2 to give 1-aryl-4-imino-1,4-dihydro-quinazolines diversely substituted on the imino group. While thiones 7 are S- methylated by methyl iodide, the corresponding 1-aryl-1H-quinazolin-4-ones (9), with the same reagent, ungergo a N-methylation, yielding 1-aryl-3-methyl-4-oxo-3,4-dihydroquinazolin-l-ium iodides ( 18 ). Structure have been confirmed by uv, ir and nmr spectra.  相似文献   

7.
Triazinyl-N-oxy free radicals, 2-methyl-2,4,6-triphenyl-1,2-dihydro-1,3,5-triazinyl-1-oxy (6a), 2,2,4,6-tetraphenyl-1,2-dihydro-1,3,5-triazinyl-1-oxy (6b), 2,2-dimethyl-4,6-diphenyl-1,2-dihydro-1,3,5-triazinyl-1-oxy (13), and 2,6-dimethyl-2,4-diphenyl-1,2-dihydro-1,3,5-triazinyl-1-oxy (14), in which the unpaired electron is delocalized over three nitrogen atoms, have been prepared and characterized. A method has been devised for introducing an N-oxide function into the triazinyl core. Then, by using a Grignard reagent, substitution α to the N-oxide group was achieved and the resulting 1,2-dihydrotriazine-N-oxide oxidized into the corresponding nitroxide. Solution EPR spectra exhibit hyperfine splitting that confirms spin delocalization over the three nitrogen atoms of the triazinyl ring. They also show that spin delocalization diminishes with increasing distance for the coupling and is largest for nitrogen N1 and weakest for N5. Free radicals 6a and 13 are stable in the solid state and have been characterized by X-ray diffraction, but they tend to gradually degrade in solution. In the solid state, these two free radicals are arranged into antiferromagnetically exchange-coupled pairs, J=-5.2(6) for 6a and -3.7(4) cm(-1) for 13 (H=-2JS(1)S(2)).  相似文献   

8.
Several cis-1,2-dibenzoylalkene derivatives have been prepared in yields ranging between 60–80%, through the Diels-Alder addition of the appropriate dienes to dibenzoylacetylene. These include, 2,3-dibenzoyl-bicyclo [2.2.1]hepta-2,5-diene (10), 2,3-dibenzoylbicyclo[2.2.2]octa-2,5-diene (11), 7-oxa-2,3-dibenzoyl-bicyclo [2.2.1]hepta-2,5-diene (12), 1,4-diphenyl-2,3-dibenzoyl-1,4-epoxynaphthalene (13) and 9,10-dihydro-11,12-dibenzoy1-9, 10-ethenoanthracene (15), formed from cyclopentadiene, cyclohexa-1,3-diene, furan, 1,3-diphenylisobenzofuran and anthracene, respectively.

Thermolysis of 2,3-dibenzoylbicyclo[2.2.1]hepta-2,5-diene gave chiefly cyclopentadiene, arising through a retro-Diels-Alder mode of fragmentation. Similar retro-Diels-Alder fragmentations have been observed in the cases of 7-oxa-2,3-dibenzoylbicyclo[2.2.1]hepta-2,5-diene and 9,10-dihydro-11,12-dibenzoyl-9,10-ethenoanthracene. The thermoylsis of 1,4-diphenyl-2,3-dibenzoyl-1,4-epoxynaphthalene, however, gave a mixture of 1,3-diphenylisobenzofuran and 1,2-dibenzoylbenzene. The formation of 1,2-dibenzoylbenzene in this case has been shown to be through the air-oxidation of 1,3-diphenylisobenzofuran. Thermolysis of 2,3-dibenzoylbicyclo[2.2.2]octa-2,5-diene, on the other hand, gave a nearly quantitative yield of 1,2-dibenzoylbenzene, which did not undergo further transformation even on heating around 260° for several hours. In none of these cases, the expected pericyclic transformation, analogous to the conversion of cis-1,2-dibenzoylstilbene (6) to the isomeric 2,2,3,4-tetraphenylbut-3-enolide (9), has been observed under thermal conditions. Treatment of 9,10-dihydro-11,12-dibenzoyl-9,10-ethenoanthracene (15) with phosphorous pentasulphide resulted in the formation of a mixture of 12,14-diphenyl-9, 10(3', 4')furanoanthracene (28) and 12,14-diphenyl-9,10(3',4')thiophenoanthracene (31), arising through the postulated intermediates, 9,10-dihydro-11-benzoyl-12-thiobenzoyl-9,10-ethenoanthracene (26) and 9,10-dihydro-11,12-dithiobenzoyl-9, 10-ethenoanthracene (29), respectively.

The electron-impact induced transformations of the cis-1,2-dibenzoylalkenes, 6, 10, 11, 12, 13 and 15 on the other hand, can be rationalized in terms of both retro-Diels-Alder type fragmentations and pericyclic transformations of the dibenzoylalkene components.  相似文献   


9.
A series of 2,3-dihydro-1H-pyrrolo[1,2-a]indoles were prepared as analogs of the active intermediates of the natural products, mitomycin C and FR900482, and their reactions with various nucleophiles were studied.  相似文献   

10.
Optimized geometries and energies for 3,4-dihydro-1,2-dithiin ( 1 ), 3,6-dihydro-1,2-dithiin ( 2 ), 4H-1,3-dithiin ( 3 ), and 2,3-dihydro-1,4-dithiin ( 4 ) were calculated using ab initio 6-31G* and MP2/6-31G*//6-31G* methods. At the MP2/6-31G*//6-31G* level, the half-chair conformer of 4 is more stable than those of 1 , 2 , and 3 by 2.5, 3.5, and 3.6 kcal/mol, respectively. The half-chair conformers of 1 , 2 , 3 , and 4 are 2.9, 7.1, 2.0, and 5.6 kcal/mol, respectively, more stable than their boat conformers. The calculated half-chair structures of 1 – 4 are compared with the calculated chair conformer of cyclohexane and the half-chair structures for cyclohexene, 3,4-dihydro-1,2-dioxin ( 5 ), 3,6-dihydro-1,2-dioxin ( 6 ), 4H-1,3-dioxin ( 7 ), and 2,3-dihydro-1,4-dioxin ( 8 ). © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 1064–1071, 1998  相似文献   

11.
Cyclobutanone reacts with diphenyl-1,2,4,5-tetrazine, in alcoholic base and in diethylamine, to give 3,8-diphenyl-6,7-dihydro-1,2-diazocin-4(5H)-one (5) and 4-diethylamino-3,8-diphenyl-6,7-dihydro-1,2-diazocine (8) respectively. With diethylamine the tetrazine yields 3,6-diphenylpyridazine.  相似文献   

12.
The first examples of "pre-aromatic" 1,2-dihydro-1,2-azaborine heterocycles have been structurally characterized, enabling the direct comparison of delocalized bonds of 1,2-dihydro-1,2-azaborines to their corresponding formal double and single bonds in nonaromatic systems. The crystallographic data provide an unprecedented look into the structural changes that occur in six-membered BN-heterocycles on their road to aromaticity, and they establish with little ambiguity that 1,2-dihydro-1,2-azaborines possess delocalized structures consistent with aromaticity.  相似文献   

13.
The treatment of 1-substituted-1,2-dihydro-4-hydroxy-2-oxo-3-quinoline carboxylic acid esters and 4-hydroxy-1-methyl-3-nitro-2-(1H)quinolinone with phosphorus oxychloride resulted in the formation of the corresponding 4-chloro-2-quinolones. Their reactions with a variety of carbon, nitrogen, oxygen, and sulfur nucleophiles is described.  相似文献   

14.
Preparation of 2,3-Dimethyl-5,6-dihydro-4H-1,2-oxaziniumiodide was achieved by N-alkylation of 3-methyl-5,6-dihydro-4H-1,2-oxazine. Reactions with C-nucleophiles led to the corresponding N-methyl-perhydro-1,2-oxazine derivatives. Reaction with sodium hydride in triglyme led to 3-methyl-4-aza-1,3-pentadiene.  相似文献   

15.
Several substituted 1-β-D-ribofuranosyl-1,2-dihydro-2-oxopyridines have been prepared as congeners of nicotinamide ribonucleoside. Direct glycosylation of the silylated 3-ethylcarboxylate 5 or 3-carbamoyl 6 derivative of 1,2-dihydro-2-oxopyridine with 1,2,3,5-tetra-O-acetyl-β-D-ribofuranose ( 7 ) in the presence of trimethylsilyl triflate gave the corresponding blocked nucleosides 8 and 9 , respectively in good yield. Ammonolysis of 8 and 9 with methanolic ammonia furnished 1-β-D-ribofuranosyl-1,2-dihydro-2-oxopyridine-3-carboxa-mide ( 10 ), the structure of which was established by single-crystal X-ray diffraction analysis. Thiation of 9 with Lawesson's reagent and subsequent deacetylation of the thiated product 11 with methanolic ammonia furnished 1-β-D-ribofuranosyl-1,2-dihydro-2-oxopyridine-3-thiocarboxamide ( 12 ). Modification of the carbo-nitrile function of 1-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)-1,2-dihydro-2-oxopyridine-4-carbonitrile ( 13 ) gave a series of 4-substituted-1-β-D-ribofuranosyl-1,2-dihydro-2-oxopyridines, in which the 4-substituent is a thiocarboxamide 15 , carboxamide 16 , carboxamidoxime 17 , carboxamidine 18 and aminomethyl 19 group. None of these compounds exhibited any significant antitumor or antiviral effects in vitro.  相似文献   

16.
Substituted 1,2-dithiole-3-thiones react with nucleophiles (alkoxides, thiolates) to give various reaction products depending on the nucleophiles and on the substituents on the 1,2-dithiole-3-thione ring. The mechanistic aspects of these reactions are discussed.  相似文献   

17.
Starting from ketone III several acyl derivatives of 4-aminomethyl-9,10-dihydro-4H-benzo[4,5]cyclohepta-[1,2--6]thiophene (VII) have been synthesized. The intramolecular cyclization of some of these new amides through the Bischler-Napieralski reaction is described.  相似文献   

18.
A series of 3-halomethyl-5,6-dihydro-1,2-oxazine N-oxides (halogen = Cl, Br, I) is prepared from 4-phenyl-3,6,6-trimethyl-5,6-dihydro-4H-oxazine N-oxide by means of a silylation/halogenation sequence. The obtained halogenated N-oxides undergo reactions typical of cyclic six-membered nitronates including 1,3-dipolar cycloaddition, addition of nucleophiles, and substitution of the halogen by C-, S-, and N-nucleophiles.  相似文献   

19.
The reaction of ethyl propiolate with triphenylphosphine (Ph3P) in the presence of N-alkylisatins led to ethyl 2,2,2-triphenyl-2,5-dihydro-1,2-λ5-oxaphosphole-4-carboxylate-spiro-1-alkyl-1,3-dihydro-2H-indol-2-ones in good yield. The reaction of dialkyl acetylenedicarboxylates with Ph3P in the presence of N-alkylisatins led to dialkyl 2,2,2-triphenyl-2,5-dihydro-1,2-λ5-oxaphosphole-3,4-dicarboxylate-spiro-1-alkyl-1,3-dihydro-2H-indol-2-ones and alkyl 4-(alkoxy)-5-oxo-2,5-dihydro-3-furancarboxylate-spiro-1-alkyl-1,3-dihydro-2H-indol-2-ones.  相似文献   

20.
A number of substituted 9,10-dihydro-9,10-[1,2]benzenoanthracene-1,4,5,8-tetrones have been synthesized and their anticancer and antimalarial activities evaluated. A one-pot synthesis of 2,5,8-trimethoxy-9,10-dihydro-9,10-[1,2]benzenoanthracene-1,4-dione (4) was achieved by heating a mixture of 1,4-dimethoxyanthracene, methoxyhydroquinone, silver oxide, and zinc iodide in toluene. Regioselective bromination of 4 and 2-methoxy-9,10-dihydro-9,10-[1,2]benzenoanthracene-1,4,5,8-tetrone (7) with N-bromosuccinimide provided 2-bromo-3,5,8-trimethoxy-9,10-dihydro-9,10-[1,2]benzenoanthracene-1,4-dione and 2-bromo-3-methoxy-9,10-dihydro-9,10-[1,2]benzenoanthracene-1,4,5,8-tetrone (1), respectively. The reactions of 1 with aliphatic primary amines and secondary amines, respectively, produced different products, a result most likely attributed to the different basicities (or nucleophilicities) and steric effects of the two kinds of amines. The structure of the displacement product, 2-bromo-3-[2-(tert-butoxycarbonyl)ethylamino]-9,10-dihydro-9,10-[1,2]benzenoanthracene-1,4,5,8-tetrone, from the reaction of 1 with tert-butyl 3-aminopropanoate was unequivocally determined by a single-crystal X-ray analysis. IC(50) values of triptycene bisquinones for the inhibition of L1210 leukemia cell viability are in the 0.11-0.27 microM range and for the inhibition of Plasmodium falciparum 3D7 are in the 4.7-8.0 microM range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号