首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of the title compound consists of distorted B12 icosahedra linked by N—B—N chains. The compound crystallizes in the rhombohedral space group Rm (No. 166). The unit cell contains four symmetry‐independent atom sites, three of which are occupied by boron [in the 18h, 18h (site symmetry m) and 3b (site symmetry m) Wyckoff positions] and one by nitrogen (in the 6c Wyckoff position, site symmetry 3m). Two of the B atoms form the icosahedra, while N atoms link the icosahedra together. The main feature of the structure is that the 3b position is occupied by the B atom, which makes the structure different from those of B6O, for which these atom sites are vacant, and B4+xC1−x, for which this position is randomly occupied by both B and C atoms.  相似文献   

2.
Two ternary borides MNi9B8 (M=Al, Ga) were synthesized by thermal treatment of mixtures of the elements. Single‐crystal X‐ray diffraction data reveal AlNi9B8 and GaNi9B8 crystallizing in a new type of structure within the space group Cmcm and the lattice parameters a=7.0896(3) Å, b=8.1181(3) Å, c=10.6497(4) Å and a=7.0897(5) Å, b=8.1579(4) Å, c=10.6648(7) Å, respectively. The boron atoms build up two‐dimensional layers, which consist of puckered [B16] rings with two tailing B atoms, whereas the M atoms reside in distorted vertices‐condensed [Ni12] icosahedra, which form a three‐dimensional framework interpenetrated by boron porphyrin‐reminiscent layers. An unusual local arrangement resembling a giant metallo‐porphyrin entity is formed by the [B16] rings, which, due to their large annular size of approximately 8 Å, chelate four of the twelve icosahedral Ni atoms. An analysis of the chemical bonding by means of the electron localizability approach reveals strong covalent B?B interactions and weak Ni?Ni interactions. Multi‐center dative B?Ni interaction occurs between the Al–Ni framework and the boron layers. In agreement with the chemical bonding analysis and band structure calculations, AlNi9B8 is a Pauli‐paramagnetic metal.  相似文献   

3.
α‐boron is the most simple structure of all boron modifications having one B12 icosahedron per (rhombohedral) unit cell. The conventional, free atom crystal structure refinement with R = 6.2% indicates considerable charge redistribution into covalent bonding. In a high order‐low order and multipole refinement the R value could be reduced to 1.19%. The ensuing deformation difference density maps reveal bonding between the boron atoms, in the icosahedra and between the icosahedra.  相似文献   

4.
Co‐pyrolysis of B2Br4 with PBr3 at 480 °C gave, in addition to the main product closo‐1,2‐P2B4Br4, conjuncto‐3,3′‐(1,2‐P2B4Br3)2 ( 1 ) and the twelve‐vertex closo‐1,7‐P2B10Br10 ( 2 ), both in low yields. X‐ray structure determination for 1 [triclinic, space‐group P1 with a = 7.220(2) Å, b = 7.232(2) Å, c = 8.5839(15) Å, α = 97.213(15)°, β = 96.81(2)°, γ = 94.07(2)° and Z = 1] confirmed that 1 adopts a structure consisting of two symmetrically boron–boron linked distorted octahedra with the bridging boron atoms in the 3,3′‐positions and the phosphorus atoms in the 1,2‐positions. The intercluster 2e/2c B–B bond length is 1.61(3) Å. The shortest boron–boron bond within the cluster framework is 1.68(2) Å located between the boron atoms antipodal to the phosphorus atoms. The icosahedral phosphaborane 2 was characterized by 11B‐11B COSY NMR spectroscopy showing cross peaks indicative for the isomer with the phosphorus atoms in 1,7‐positions. Both the X‐ray data of 1 and the NMR spectroscopic data of 1 and 2 give further evidence for the influence of an antipodal effect of heteroatoms to cross‐cage boron atoms and, vice versa, of an additional shielding of the phosphorus atoms caused by B‐Hal substitution at the boron positions trans to phosphorus.  相似文献   

5.
6.
The structure of [B6H9NaO14, H3BO3, 6H2O] was determined by single‐crystal X‐ray diffraction and further analyzed by FTIR spectroscopy and differential thermal/thermogravimetric analysis. The asymmetric unit contains Na–O polyhedra (distorted octahedron), [B6O8(OH)3] fundamental building blocks, one free water molecule and one free H3BO3 molecule. In the hexaborate anion, three B3O3 rings are linked by a common oxygen atom with five trigonal and one tetrahedral boron atoms. The hexaborate group is also linked to the oxygenated environment of the sodium atom by three other six‐membered rings, each of which involve two boron atoms, three oxygen atoms, and sodium as the joint atom.  相似文献   

7.
A novel ternary boron-rich scandium borocarbide Sc4.5−xB57−y+zC3.5−z (x=0.27, y=1.1, z=0.2) was found. Single crystals were obtained by the floating zone method by adding a small amount of Si. Single-crystal structure analysis revealed that the compound has an orthorhombic structure with lattice constants of a=1.73040(6), b=1.60738(6) and c=1.44829(6) nm and space group Pbam (No. 55). The crystal composition ScB13.3C0.78Si0.008 calculated from the structure analysis agreed with the measured composition of ScB12.9C0.72Si0.004. The orthorhombic crystal structure is a new structure type of boron-rich borides and there are six structurally independent B12 icosahedra I1—I6, one B8/B9 polyhedron and nine bridging sites all which interconnect each other to form a three-dimensional boron framework. The main structural feature of the boron framework structure can be understood as a layer structure where two kinds of boron icosahedron network layer L1 and L2 stack each other along the c-axis. There are seven structurally independent Sc sites in the open spaces between the boron icosahedron network layers.  相似文献   

8.
Crystal structures of boron‐rich solids are characterized by boron atom arrangements that are quite diverse: chains, sheets, and a variety of polyhedra like octahedra, pentagonal bipyramids, cuboctahedra, and icosahedra are observed. Probing by electron energy‐loss spectroscopy (EELS), these different structural features are mirrored by a pronounced variation of the energy loss near‐edge fine structure (ELNES) of the BK ionization edges. For identification, characteristics of these fine structures can be used as so‐called “coordination fingerprints”, which is shown for solids like MgB2, TaB2, ZrB2, CaB6, SrB6, BaB6, NaB5C, KB5C, Na3B20, Na2B29, UB12, ZrB12, LaB2C2, CeB2C2, and CaB2C2. In addition, theoretical calculations of ELNES based on the density functional theory (FLAPW method) are presented for an example of boron‐rich solids.  相似文献   

9.
SrSn3 – a Superconducting Alloy with Non‐bonding Electron Pairs SrSn3 was synthesized from the elements in a welded niobium ampoule. The crystal structure was determined from X‐ray single crystal data. Space group R3m, a = 6,940(2) Å, c = 33,01(1) Å, Z = 12, Pearson symbol hR48. SrSn3 shows an ordered atomic distribution on four crystallographic sites. The structure is build up from two closed packed atom layers (Sn1/Sr1 and Sn2/Sr2) each with the composition Sr : Sn = 1 : 3 and with hexagonal symmetry of the Sr atoms. The Sn atoms are shifted with respect to the ideal positions of a closed packed layer in a way that Sn triangles, which are separated by Sr atoms, result. Translational symmetry along the c axis arises from a 12‐layer stacking sequence with hexagonal and cubic closest packing motives. Due to the layer sequence ABABCACABCBC… units of three face‐sharing Sn octahedra result (condensation through Sn2 atoms) which form the Sn partial structure. The octahedra chains run parallel to the c axis and are connected by exclusively vertex sharing Sn octahedra (Sn1 atoms). Temperature dependent susceptibility measurements reveal superconducting properties. LMTO band structure calculations verify the metallic behavior. An analysis of the density of states with the help of the electron localization function (ELF) shows, that two kinds of lone pairs occur in this intermetallic phase: non‐bonding electron pairs with the shape of a sp2 orbital hybrid are located at the Sn2 atoms and lone pairs with p orbital character are located at Sn1 atoms. The role of lone pairs with respect to the superconducting property is discussed.  相似文献   

10.
Crystals of Ce‐doped SrMgF4, strontium magnesium tetrafluoride, have been found to have a monoclinic P21 structure with doubled a and tripled c cell lengths compared with the orthorhombic Cmcm structure previously reported in the literature. The perovskite‐type slabs, composed of corner‐sharing MgF6 octahedra and Sr atoms, are stacked along the b axis. The six crystallographically independent MgF6 octahedra are rotated so as to provide long periodicities along a and c . The coordination numbers and bond distances around the six crystallographically independent Sr atoms are slightly different in each case. In the superstructure, the Sr atoms lie on local mirror planes which are thought to originate at the high‐temperature phase transition.  相似文献   

11.
Sodium tetracalcium pentaniobium heptadecaoxide, NaCa4­Nb5O17, corresponds to the n = 5 term of the homologous AnBnO3n+2 family of structures composed of ABX3 perovskite layers. The structure consists of perovskite‐type blocks of n = 5 layers of NbO6 octahedra, separated by an interblock region. Successive blocks along the b axis are displaced by c with respect to each other. The deformation of the NbO6 octahedra is a minimum at the middle of each block, and increases along the direction of the b axis to a maximum at each end of the block. Ca and Na share the same intrablock sites, coordinated by 12 O atoms, whereas only Ca atoms are found in the interblock cavities, at sites with different coordination geometries.  相似文献   

12.
The existence of a boron carbide phase with ∼25 at % carbon was proven experimentally. To evaluate the maximum possible concentration of C atoms in boron carbide (B12 − x C x )(BC2) crystals, we performed quantum-chemical calculations of (B12 − x C x )(BH2)6(CH3)6 model compounds (x = 0–4; the goal of calculations was to determine the upper limiting number of C atoms in the B12 − x C x icosahedron) by the density functional theory method (B3LYP, 6-31G** basis set, full geometry optimization). A comparison of the experimental and calculated data showed that the calculations of the model compounds reproduced the experimental dependences of the structural parameters of the icosahedron (mean bond length and volume) on the number of C atoms in it. The icosahedra were found to be stable at x ≤ 3. According to the results of the quantum-chemical calculations, the maximum carbon concentration in boron carbide was 33 at %, which corresponded to the composition B10C5 and the structural formula (B9C3)(BC2).  相似文献   

13.
In the title compound, sodium N‐chloro­benzene­sulfon­amide sesquihydrate, Na+·C6H5ClNO2S?·1.5H2O, the sodium ion exhibits octahedral coordination by O atoms from three water mol­ecules and by three sulfonyl O atoms of three different N‐­chloro­benzene­sulfon­amide anions. A two‐dimensional polymeric layer consists of units, each comprising two face‐sharing octahedra which share four corners with four other such units, the layer running parallel to the ab plane. The water mol­ecules participate in hydrogen bonds of the types O—H?O, O—H?N and O—H?Cl.  相似文献   

14.
A new family of quaternary carbon and nitrogen containing Rare Earth (RE: Sc, Y, Ho, Er, Tm and Lu) borides: REB15.5CN, has been synthesized and structurally characterized by powder X-ray diffraction data. They are all isotypic with Sc1−xB15.5CN whose structure was solved based on single-crystal X-ray data and HRTEM investigations. The structure refinement converged at a R(F2) value of 0.044 for 364 reflections. The new structure type of Sc1−xB15.5CN is composed of a three-dimensional network based on interconnected slabs of boron (B12)ico icosahedra and (B6)oct octahedra. A linear [CBC] chain and nitrogen tightly bridges icosahedra. Sc partially occupies voids in the sheets of boron octahedra. It crystallizes with the trigonal space group P3m1, with Z=2. Lattice parameters (nm) are as follows: for RE: Sc, a,b=0.5568(4), c=1.0756(2); Y, a,b=0.55919(6), c=1.0873(2); Ho, a,b=0.55883(7), c=1.0878(6); Er, a,b=0.55889(5), c=1.0880(6); Tm, a,b=0.5580(1), c=1.0850(6); Lu, a,b=0.55771(9), c=1.0839(4). Magnetic characterization of ErB17C1.3N0.6 has been performed.  相似文献   

15.
The structure of K3(Me4N)3[Co(CN)6]2·3H2O has been determined from three-dimensional X-ray diffraction data. The unit cell is formed by parallel layers of cobalt octahedra [CoC6] and potassium octahedra, [K(1)N5O(1)], separated byc/2. In each layer both types of octahedra are located alternatively. The [MeN4]+ tetrahedra are located in the cavities between the two layers of octahedra. The crystal structure of this compound is the first example of its type. TMC 2483  相似文献   

16.
New auride Ca3Au3In was synthesized from the elements in a sealed tantalum tube in a high‐frequency furnace. Ca3Au3In was investigated by X‐ray powder and single crystal diffraction: ordered Ni4B3 type, Pnma, a = 1664.1(6), b = 457.3(2), c = 895.0(3) pm, wR2 = 0.0488, 1361 F2 values, and 44 variables. The three crystallographically independent boron positions of the Ni4B3 type are occupied by the gold atoms, while the four nickel sites are occupied by calcium and indium in an ordered manner. All gold atoms have trigonal prismatic coordination, i.e. Ca6 prisms for Au1 and Au2 and Ca4In2 prisms for Au3. While the Au3 atoms are isolated, we observe Au1–Au1 and Au2–Au2 zig‐zag chains at Au–Au distances of 292 and 284 pm. These slabs resemble the CrB type structure of CaAu. Consequently Ca3Au3In can be considered as a ternary auride. Together the Au2, Au3 and indium atoms build up a three‐dimensional [Au2In] polyanionic network (281–293 pm Au–In) in which the chains of Au1 centered trigonal prisms are embedded. The crystal chemical similarities with the structures of Ni4B3, CaAuIn, and CaAu are discussed.  相似文献   

17.
The compounds BaLn2Se4 (Ln = rare‐earth metal = lanthanide = Er, Tm and Yb), namely barium di(erbium/thulium/ytterbium) tetraselenide, crystallize in the orthorhombic space group Pnma in the CaFe2O4 structure type. In this structure type, all atoms possess m symmetry. The Ln atoms are octahedrally coordinated by six Se atoms. A three‐dimensional channel structure is formed by the corner‐ and edge‐sharing of these LnSe6 octahedra. The Ba atoms are coordinated to eight Se atoms in a bicapped trigonal–prismatic arrangement, and they occupy the channels of the three‐dimensional framework.  相似文献   

18.
Anionic Fragments of h‐BN in the Structure La6B4N10 The compound La6B4N10 was synthesized by solid state reactions at high temperatures. Crystals obtained for La6B4N10 were systematically twinned and showed orthorhombic symmetry. An X‐ray crystal structure refinement on a needle shaped pseudo‐merohedral twin yielded the monoclinic space group P21/c, Z = 2, lattice parameters a = 971.89(6) pm, b = 1479.41(9) pm, c = 762.32(4) pm, β = 90.005(9)° and converged at R1 = 0.0352, wR2 = 0.0555 for all independent reflections. The structure of La6(B3N6)(BN3)N contains cyclic B3N6 ions with three exocyclic N atoms, carbonate ion like BN3 units and nitride ions that can be considered as fragments or products of a nitration reaction of hexagonal boron nitride.  相似文献   

19.
Disodium hexamanganese(II,III) germanate is the first aenigmatite‐type compound with significant amounts of manganese. Na2(Mn5.26Na0.74)Ge6O20 is triclinic and contains two different Na positions, six Ge positions and 20 O positions (all with site symmetry 1 on general position 2i of space group P). Five out of the seven M positions are also on general position 2i, while the remaining two have site symmetry (Wyckoff positions 1f and 1c). The structure can be described in terms of two different layers, A and B, stacked along the [011] direction. Layer A contains pyroxene‐like chains and isolated octahedra, while layer B is built up by slabs of edge‐sharing octahedra connected to one another by bands of Na polyhedra. The GeO4 tetrahedra show slight polyhedral distortion and are among the most regular found so far in germanate compounds. The M sites of layer A are occupied by highly charged (trivalent) cations, while in layer B a central pyroxene‐like zigzag chain can be identified, which contains divalent (or low‐charged) cations. This applies to the aenigmatite‐type compounds in general and to the title compound in particular.  相似文献   

20.
The crystal structure of the title aluminium barium lanthanum ruthenium strontium oxide has been solved and refined using neutron powder diffraction to establish the parameters of the oxygen sublattice and then single‐crystal X‐ray diffraction data for the final refinement. The structure is a cubic modification of the perovskite ABO3 structure type. The refined composition is Ba0.167La0.548Sr1.118Ru0.377Al0.290O3.480, and with respect to the basic perovskite structure type it might be written as (Ba8La13.68Sr34.32)(Al13.92La12.64Ru18.08Sr19.36)O192−x, with x = 24.96. The metal atoms lie on special positions. The A‐type sites are occupied by Ba, La and Sr. The Ba atoms are located in a regular cuboctahedral environment, whereas the La and Sr atoms share the same positions with an irregular coordination of O atoms. The B‐type sites are divided between two different Wyckoff positions occupied by Ru/Al and La/Sr. Only Al and Ru occupy sites close to the ideal perovskite positions, while La and Sr move away from these positions toward the (111) planes with high Al content. The structure contains isolated RuO6 octahedra, which form tetrahedral substructural units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号