首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the title compound, C24H20Br2N2O4S, the indole ring system is planar and the S atom has a distorted tetrahedral configuration. The sulfonyl‐bound phenyl ring is orthogonal to the indole ring system and the conformation of the phenyl­sulfonyl substituent with respect to the indole moiety is influenced by intramolecular C—H⃛O hydrogen bonds involving the two sulfonyl O atoms. The mean plane through the acetyl­amido group makes a dihedral angle of 57.0 (1)° with the phenyl ring of the benzyl moiety. In the crystal, glide‐related mol­ecules are linked together by N—H⃛O hydrogen bonds and C—H⃛π interactions to form molecular chains, which extend through the crystal. Inversion‐related chains are interlinked by C—H⃛π interactions to form molecular layers parallel to the bc plane. These layers are interconnected through π–π interactions involving the five‐ and six‐membered rings of the indole moiety.  相似文献   

2.
The title compound, C28H27N3O4S, crystallizes in the centrosymmetric space group P21/n, with one mol­ecule in the asymmetric unit. In the indole ring, the dihedral angle between the fused rings is 3.6 (1)°. The phenyl ring of the sulfonyl substituent makes a dihedral angle of 79.2 (1)° with the best plane of the indole moiety. The phenyl ring of the di­methyl­amino­phenyl group is orthogonal to the phenyl ring of the phenyl­sulfonyl group. The dihedral angle formed by the weighted least‐squares planes through the pyrrole ring and the phenyl ring of the di­methyl­amino­phenyl group is 7.8 (1)°. The molecular structure is stabilized by C—H?O and C—H?N interactions.  相似文献   

3.
The four oligosulfanes, bis(1‐chloro‐2,2,4,4‐tetra­methyl‐3‐oxo­cyclo­butan‐1‐yl)­disulfane, C16H24Cl2O2S2, (III), 1,3‐bis(1‐chloro‐2,2,4,4‐tetra­methyl‐3‐oxo­cyclo­butan‐1‐yl)­trisulfane, C16H24Cl2O2S3, (V), 1,4‐bis(1‐chloro‐2,2,4,4‐tetra­methyl‐3‐oxo­cyclo­butan‐1‐yl)­tetrasulfane, C16H24Cl2O2S4, (VII), and 1,6‐bis(1‐chloro‐2,2,4,4‐tetra­methyl‐3‐oxo­cyclo­butan‐1‐yl)­hexasul­fane, C16H24Cl2O2S6, (VIII), all have similar geometric parameters, with the C—C bond lengths involving the chloro‐substituted cyclo­butanyl C atom being elongated to about 1.59 Å. There are two mol­ecules in the asymmetric units of the tri‐ and tetrasulfanes, and the mol­ecules in the latter compound have local C2 symmetry. The mol­ecule of the hexasulfane has crystallographic C2 symmetry. Most of the cyclo­butanyl rings are not perfectly planar and have slight but varying degrees of distortion towards a flattened tetrahedron. The polysulfane chain in each structure has a helical conformation, with each additional S atom in the chain adding approximately one quarter of a turn to the helix.  相似文献   

4.
The title compound, C16H12N2S, has been synthesized by base‐catalyzed condensation of 1‐methyl­indole‐3‐carbox­aldehyde with thio­phene‐3‐aceto­nitrile. The product assumes an approx­imately planar Z configuration. The mol­ecule has a thienyl‐ring flip disorder.  相似文献   

5.
The title compound, C23H29N3O4, has potential calcium modulatory properties. The conformation of the 1,4‐di­hydro­pyridine ring is unusual in that it is planar, instead of the usual shallow boat. The 3‐nitro­phenyl substituent is in the synperiplanar orientation with respect to the di­hydro­pyridine ring plane. The oxo­cyclo­hexene ring has a distorted envelope conformation, with the out‐of‐plane atom being disordered on opposite sides of the ring plane. The mol­ecules are linked into chains by intermolecular hydrogen bonds.  相似文献   

6.
In the mol­ecule of the title compound, C11H10INO2, the phthal­imide group is not exactly planar. The dihedral angle between the mean planes of the phthal­imide and iodo­propyl moieties is 76.6 (2)°. The structure is stabilized by intermolecular C—H?O and C—H?I interactions, and an intermolecular I?O interaction of 3.571 (4) Å, the latter linking the mol­ecules into infinite chains.  相似文献   

7.
In the title compound, C18H16N2O3, the indole ring is planar and the two adjacent carbonyl groups are mutually trans oriented with a torsion angle of 144.8 (3)°. The single C—C bond linking the two carbonyl functionalities is 1.539 (4) Å. Mol­ecules are linked into a two‐dimensional network by inter­molecular N—H⋯O hydrogen bonds.  相似文献   

8.
In the title compound, C25H19NO4, the indole moiety is not completely planar, the heterocyclic ring being distorted very slightly towards a half-chair conformation. The benzoyl and 4-­methoxy­phenyl substituents are individually almost planar and are in a bisecting and nearly perpendicular configuration, respectively, with respect to the plane of the indole moiety. The molecular and packing structures in the crystal are stabilized by intramolecular and intermolecular C—H⋯O interactions.  相似文献   

9.
The title compound, C18H14O4, forms a supramolecular structure viaπ–π stacking and weak C—H⋯O and C—H⋯π interactions. The benzo­pyran moiety is almost planar. The benzene ring of the phenyl­methyl acetate substituent is nearly perpendicular to the fused benzene and pyran rings and also to the methyl acetate group.  相似文献   

10.
In the title compounds, C12H12N2O2, (I), and C17H14N2O2, (II), respectively, the indole rings are planar and the vinyl groups lie out of the indole planes, making dihedral angles of 33.48 (5) and 41.31 (8)°, respectively. In (II), the dihedral angle between the phenyl and indole ring planes is 32.06 (6)°. In both mol­ecules, the double bond connecting the methyl­nitro­vinyl group and the indole nucleus adopts an E configuration. Notwithstanding the differences in space group [C2/c for (I) and P212121 for (II)], the mode of packing of compounds (I) and (II) is determined by similar inter­molecular N—H⋯O hydrogen‐bonding inter­actions, forming chains that run parallel to [101] in (I) and [001] in (II).  相似文献   

11.
In the syn‐ and anticlinal isomers of the title compound, C22H18N2O6, the indole moiety is not completely planar, with the pyrrolidine ring being distorted very slightly towards a conformation intermediate between half‐chair and envelope. The molecular and packing structures in the crystals of these isomers are stabilized by C—H?O interactions.  相似文献   

12.
The cation of the title compound, C13H18N3S+·NO3, consists of two subunits, viz. a planar indole moiety and a nonplanar thiouronium moiety. An isolated intermolecular hydrogen bond connects the cation with the nitrate anion. The crystal packing is additionally characterized by short intermolecular contacts between parallel indole systems. A topological analysis of the electron density revealed C—S single bonds and partial double bonding in the N—C—N group.  相似文献   

13.
The structure of the title compound, C18H20ClN3O5, displays the characteristic features of azo­benzene derivatives. Intramolecular N—H⋯O, weak intramolecular C—H⋯O, and intermolecular O—H⋯O and C—H⋯O interactions influence the conformation of the mol­ecules and the crystal packing. Intermolecular hydrogen bonds link the mol­ecules into infinite chains, and the title compound adopts the keto–amine tautomeric form. The azo­benzene moiety of the mol­ecule has a trans configuration. The mol­ecule is not planar, and the dihedral angle between the two phenyl rings is 35.6 (2)°.  相似文献   

14.
9,10‐Di­phenyl‐9,10‐epi­dioxy­anthracene, C26H18O2, (I), was accidentally used in a photo­oxy­genation reaction that produced 9,10‐di­hydro‐10,10‐di­methoxy‐9‐phenyl­anthracen‐9‐ol, C22H20O3, (II). In both compounds, the phenyl rings are approximately orthogonal to the anthracene moiety. The conformation of the anthracene moiety differs as a result of substitution. Intramolecular C—H⃛O interactions in (I) form two approximately planar S(5) rings in each of the two crystallographically independent mol­ecules. The packing of (I) and (II) consists of molecular dimers stabilized by C—H⃛O interactions and of molecular chains stabilized by O—H⃛O interactions, respectively.  相似文献   

15.
In the title compound, C23H21N3O3, the indole ring is planar and the phenyl ring of the benzyl group makes a dihedral angle with the best plane of the indole ring of 73.77 (4)°. The double bond connecting the aza­bicyclic and indole moieties has Z geometry.  相似文献   

16.
The piperidine ring in the title compound, C22H28N4S, exhibits a chair conformation. The thio­semicarbazone moiety adopts an extended conformation, and the planar phenyl rings are oriented equatorially with respect to the piperidine ring. Two intermol­ecular hydrogen bonds involving the S atom form molecular pairs, and the crystal structure is stabilized by weak C—H⃛π interactions in addition to van der Waals forces.  相似文献   

17.
The title compound, C16H19NO5, crystallizes as a centrosymmetric dimer through strong O—H⋯O hydrogen‐bonding interactions between the hydroxy­phenyl and morpholino­carbonyl groups. The morpholino­carbonyl group is almost perpendicular to the propenoate moiety. Electron delocalization in the N—C(=O) fragment leads to the formation of hydrogen‐bonded S(5) ring motifs through C—H⋯O interactions.  相似文献   

18.
The title compound, C20H14N4, lies about an inversion centre and the benz­imidazole moiety and the phenyl ring are twisted by 30.9 (1)°. The benz­imidazole moiety is completely planar, with a maximum deviation of 0.009 (2) Å. Intermolecular N—­H?N hydrogen bonds give rise to a layered structure, with the layers stacked by van der Waals interactions.  相似文献   

19.
The structures of 4‐dimethyl­amino‐β‐nitro­styrene (DANS), C10H12N2O2, and 4‐dimethyl­amino‐β‐ethyl‐β‐nitro­styrene (DAENS), C12H16N2O2, have been solved at T = 100 K. The structure solution for DANS was complicated by the presence of a static disorder, characterized by a misorientation of 17% of the mol­ecules. The mol­ecule of DANS is almost planar, indicating significant conjugation, with a push–pull effect through the styrene skeleton extending up to the terminal substituents and enhancing the dipole moment. As a consequence of this conjugation, the hexa­gonal ring displays a quinoidal character; the lengths of the C—N [1.3595 (15) Å] and C—C [1.448 (2) Å] bonds adjacent to the benzene ring are shorter than single bonds. The mol­ecules are stacked in dimers with anti­parallel dipoles. In contrast, the mol­ecule of DAENS is not planar. The ethyl substituent pushes the nitro­propene group out of the benzene plane, with a torsion angle of −21.9 (3). Nevertheless, the mol­ecule remains conjugated, with a shortening of the same bonds as in DANS.  相似文献   

20.
The title compounds, C20H25N2O2S+·I?, (I), and C29H25BrN2O2S, (II), respectively, both crystallize in space group P. The pyrrole ring subtends an angle with the sulfonyl group of 33.6° in (I) and 21.5° in (II). The phenyl ring of the sulfonyl substituent makes a dihedral angle with the best plane of the indole moiety of 81.6° in (I) and 67.2° in (II). The lengthening or shortening of the C—N bond distances in both compounds is due to the electron‐withdrawing character of the phenyl­sulfonyl group. The S atoms are in distorted tetrahedral configurations. The molecular structures are stabilized by C—H?O and C—H?I interactions in (I), and by C—H?O and C—H?N interactions in (II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号