首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Science as inquiry is a key content standard in the National Science Education Standards; however, few secondary science teachers successfully and consistently implement inquiry‐based instruction in their classrooms. This research examines the role of reform‐based curricular materials in influencing the classroom practices of 12 high school chemistry teachers and investigates the role of the teachers' knowledge and beliefs in their implementation of the reform‐based chemistry curriculum. Qualitative and quantitative data were collected in the form of beliefs interviews and classroom observations. The teachers' classroom practices were measured prior to and during the field test of the reform‐based chemistry curriculum. Analysis of the data revealed that teachers' classroom practice became more reform‐based in the presence of the new curriculum; however, the degree of change is related to the teachers' beliefs about teaching and learning, depth of chemistry knowledge, and years of teaching experience. Experienced, out‐of‐discipline teachers with transitional or student‐centered teaching beliefs demonstrated the most growth in reform‐based teaching practices. This study reinforces the need for reform‐based curriculum to assist teachers in implementing the intent of the National Science Education Standards.  相似文献   

2.
The purpose of this study was to examine the relationship between different types of professional development, teachers' instructional practices, and the achievement of students in science and mathematics. The types of professional development studied included immersion, examining practice, curriculum implementation, curriculum development, and collaborative work. Data regarding teachers' instructional practices and the amount of professional development were collected using teacher surveys. Ninety‐four middle school science teachers and 104 middle school mathematics teachers participated in the study. Student achievement was measured using eighth grade state science and mathematics achievement test data. Regression analyses suggested that for both science and mathematics teachers, examining practice and curriculum development were significantly related to the use of standards‐based instructional practices. Only curriculum development for mathematics teachers was significantly related to student achievement. Implications of results for the professional development of science and mathematics teachers are discussed.  相似文献   

3.
4.
The study was situated in a National Science Foundation supported Math Science Partnership between a private university and an urban school district. This study sought to understand the decision‐making process of elementary teachers as they implement an integrated science, technology, engineering, and mathematics (STEM) curriculum in their classrooms and the interactions that occur between the teachers and curriculum during that process. This qualitative study utilized a comparative case study approach to understanding the decision‐making process of three elementary teachers enacting the same lesson. Analysis of the interactions revealed that the teachers' perceptions of student ability, their pedagogical design capacity, and time were influences that impacted implementation. These findings have implications for STEM‐focused professional development of elementary teachers.  相似文献   

5.
Increasing mathematical competencies of American students has been a focus for educators, researchers, and policy makers alike. One purported approach to increase student learning is through connecting mathematics and science curricula. Yet there is a lack of research examining the impact of making these connections. The Mathematics Infusion into Science Project, funded by the National Science Foundation, developed a middle school mathematics‐infused science curriculum. Twenty teachers utilized this curriculum with over 1,200 students. The current research evaluated the effects of this curriculum on students' mathematics learning and compared effects to students who did not receive the curriculum. Students who were taught the infusion curriculum showed a significant increase in mathematical content scores when compared with the control students.  相似文献   

6.
This study focused on two middle schools in the central US who participated in collaborative, sustained, whole‐school professional development in implementing inquiry as part of National Science Education Standards, or standards‐based instructional practices. Participants were involved in their second year of the professional development experience. The research question explored was, “What barriers do science teachers encounter when implementing standards‐based instruction while participating in effective professional development experiences?” Qualitative data collected in the form of teacher interviews and classroom observations were utilized and were analyzed using a barrier to reform rubric. Findings indicate that even with effective professional development, science teachers still encounter technical, political, and cultural barriers to implementation. More support is required for professional development efforts to be successful, such as resources and time, as well as administrative buy‐in and support. Findings also revealed that even the best intended professional development efforts do not reveal and address existing beliefs for all teachers. Implications for future science education reform stakeholders are discussed.  相似文献   

7.
Objective: In this study, we investigated the implementation of project‐based learning (PBL) activities in four secondary science, technology, engineering, and mathematics (STEM) education settings to examine the impact of inquiry based instructional practices on student learning. Method: Direct classroom observations were conducted during the 2013–2014 school year in STEM Traditional Courses, a STEM Platform School, an Engineering Optional Program (EOP), and a Virtual STEM Academy (VSA) to measure teacher instructional practices (School Observation Measure) and student engagement (The Rubric for Student‐Centered Activities). Results: The four approaches to STEM education showed significant differences in their implementation of PBL, with the EOP and VSA having higher incidences of PBL activities. Additionally, higher‐level questioning strategies, higher‐order instructional feedback, and integration of STEM subject areas was absent or rarely observed. Conclusions: Components of PBL are missing in STEM education, in traditional and non‐traditional STEM courses. In‐service teachers may benefit from professional development that enhances their understanding of PBL activities to maximize student learning opportunities.  相似文献   

8.
This article is about an investigation of six middle school science teachers’ beliefs and instructional practice about the coherence of the science they teach as articulated by National Science Education Standards ( NRC, 1996 ). Many well intentioned reform efforts focus on improving content knowledge of teachers, but many classroom teachers regularly miss opportunities to provide conceptual connections within the science ideas building the sense of coherence in science. This investigation involved a quasi experimental study to examine the efficacy of a method for collecting data about middle school science teachers’ thinking about science and to determine if they teach science coherently. The teachers were surveyed, interviewed, provided concept maps about their thinking of the science they taught, and observed to investigate whether their practice reflects their beliefs. An examination of the teachers’ beliefs, stated and unstated curriculum, the connections among topics and the nature of science revealed that one, the observation tool may have merit for identifying the content and connections among science topics, and two, that teachers ‘stated beliefs consistent with the National Science Education Standards’ vision for coherent science, did not match their demonstrated practice. The content taught could be characterized in three ways; coherent content and few connections, coherent content and connections, and not coherent content. This indicates for this group of middle school science teachers that knowing how they think about science and how those beliefs are reflected in their teaching is complex. This study can inform teacher education and professional development efforts about the need to move beyond just content enhancement to examine prior beliefs about the connections of concepts within science.  相似文献   

9.
10.
This study reports on a multiyear effort to create and evaluate cognitive‐based curricular materials for secondary school science classrooms. A team of secondary teachers, educational researchers, and academic biomedical engineers developed a series of curriculum units that are based in biomedical engineering for secondary level students in physics and advanced biology classes. These units made use of an instructional design based upon recent cognitive science research called the Legacy Cycle. Over a 3‐year period, comparison of student knowledge on written questions related to central concepts in physics and/or biology generally favored students who had worked with the experimental materials over students in control classrooms. In addition, experimental students were better able to solve applications type problems, as well as unit‐specific near transfer problems.  相似文献   

11.
This study investigates how teacher attention to student thinking informs adaptations of challenging tasks. Five teachers who had implemented challenging mathematics curriculum materials for three or more years were videotaped enacting instructional sequences and were subsequently interviewed about those enactments. The results indicate that the two teachers who attended closely to student thinking developed conjectures about how that thinking developed across instructional sequences and used those conjectures to inform their adaptations. These teachers connected their conjectures to the details of student strategies, leading to adaptations that enhanced task complexity and students' opportunity to engage with mathematical concepts. By contrast, the three teachers who evaluated students' thinking primarily as right or wrong regularly adapted tasks in ways that were poorly informed by their observations and that reduced the complexity of the tasks. The results suggest that forming communities of inquiry around the use of challenging curriculum materials is important for providing opportunities for students to learn with understanding.  相似文献   

12.
This study evaluated the effectiveness of teacher‐scientist partnerships for increasing the use. of inquiry in precollege classrooms. It assessed the influence of the Teaching About Energy Through Inquiry Institutes for middle and high school teachers and energy scientists on participants' attitudes about science and science education, use of inquiry instructional techniques, and student attitudes about their classroom environments. Participant surveys, institute and classroom observations, lesson plans, and interviews indicated increased appreciation for inquiry, greater confidence in teaching using inquiry, and greater use of inquiry in the classroom. Student surveys and classroom observations pointed to higher levels of student satisfaction and less friction among classmates during inquiry‐based investigations implemented after the institutes. Moreover, scientist partners reported increased familiarity with principles of science education and best teaching practice, which are essential skills and knowledge for disseminating results of scientific research to nonscientific audiences, as well as their own students. These results suggest that collaborations between teachers and research scientists can positively affect the environment for learning science in precollege and college classes. Successful collaborations are most likely to occur when equal status for teachers and scientists in the partnership is stressed and partners have the opportunity to explore inquiry‐based curricula together.  相似文献   

13.
This qualitative case study sought to investigate what relationship exists between teaching efficacy and cultural efficacy of novice science teachers in high‐needs, high‐minority urban schools. One major theme—the importance of establishing positive teacher–student relationships—surrounding teaching efficacy in the context of cultural efficacy emerged. The data sources included: (a) teachers' responses to a focus group interview conducted at the end of their first year, (b) written reports and documentation from university‐based field supervisors' observations during the teachers' first year, and (c) teachers' self‐reported responses on the Science Teaching Efficacy Belief Instrument designed to measure science teaching efficacy. Final analysis of the data reflects a strong relationship between teaching efficacy and practice within the context of culture. The results of this study also indicated an existing relationship between teaching efficacy and cultural efficacy through cultural connections with students. Encouraging the development of teacher efficacy in the context of cultural efficacy becomes important at all levels of teacher preparation, especially to ensure the retention of high‐quality science teachers in high‐needs schools.  相似文献   

14.
The GTECH project, funded through a grant from the GTE Foundation, prepared school teams of science, mathematics and technology teachers and an administrator to set goals for their local schools regarding implementation of electronic technology and integration of content across curricular areas. A variety of teacher‐centered staff development strategies were used to enable participants to achieve local school objectives, model and encourage active learning environments involving technology, develop integrated curriculum and provide training to their peers. GTECH staff provided workshops and summer institutes based on teacher feedback and classroom observations. Data from the Stages of Concerns Questionnaire assisted the staff in designing effective staff development activities. Over the 2‐year period, teacher teams developed and implemented integrated instructional materials and developed skills in using HyperStudio, PowerPoint, telecommunications applications, and instructional resources from the Internet. They also linked instruction to new state and national standards in science, mathematics, and technology. GTECH teachers reported that their students have expanded their knowledge and skill in problem solving, teamwork, technical expertise, and creativity.  相似文献   

15.
This paper is a report of the impact of an externally funded, multiyear systemic reform project on students' science achievement on a modified version of the Third International Mathematics and Science Study (TIMSS) test in 33 small, rural school districts in two Midwest states. The systemic reform effort utilized a cascading leadership strategy of professional development delivered at summer workshops and through distance technologies and local leadership groups that focused on helping teachers work in communities of practice to adapt science inquiry lessons to teach and reinforce strategies and skills in language arts in the lessons. Science achievement scores of Grade 3 and Grade 6 student cohorts on the two forms of the TIMSS administered at the beginning, middle, and end of the professional development effort revealed a V‐shaped pattern of scores, suggesting that teachers struggled with the newly adapted science inquiries at first but then became more effective in their use. The impact of the adaptation strategy on the students' achievement, questions about the time needed for new instructional strategies to be embraced by teachers, and the wisdom of using “low stakes” achievement tests in studies are discussed.  相似文献   

16.
Jill was a preservice science education student who wanted to make science more accessible to all students. This study is an examination of the “borders” she encountered as she completed her student teaching in a cultural setting that was different from her own. Her student teaching experience was documented through interviews, participant observations, field notes, lesson plans, and a journal. An inductive analysis of the documents and a context chart of the coded data revealed that Jill encountered the (a) cultural border of her students, (b) cultural border of science instruction, and (c) cultural border of the school. While some borders were crossed, others were not. This study suggests that during field experiences, preservice teachers may encounter multiple cultural borders, some consistent and some inconsistent with their instructional philosophy. As student teachers work with diverse populations, supervisors and cooperating teachers need to recognize the borders student teachers will encounter and encourage student teachers to examine their beliefs about practice as a means to acknowledge and understand the encountered borders.  相似文献   

17.
For the last five years, the Center for Precollege Programs of the New Jersey Institute of Technology has operated the Urban Elementary Outreach Program, a staff development program intended to bring improved math and science education to the elementary schools of Newark, New Jersey. Teachers in urban settings have been hampered in their efforts to provide enriching, student-centered and constructivist science and math teaching ( Huinker, 1996 ). The Outreach Program has attempted to provide teachers with sustained support through training and direct classroom assistance in an effort to develop a sense of self-efficacy ( Bandura, 1982 ) in relation to desired teaching and student behaviors that are part of a standards-based learning experience. Traditional training approaches for teachers are supplemented by weekly classroom visits by graduate assistants, who both model standards-based science teaching and assist the teacher in assuming effective instructional methods. The combination of workshops, orientations, newsletters, and weekly classroom visits make up a staff development program of two years in duration for teacher participants. Through this intensive program, we intend to change teaching behaviors in the many complex ways identified in the National Science Education Standards.  相似文献   

18.
In this paper is reported the extent of textbook use by 39 middle school mathematics teachers in six states, 17 utilizing a textbook series developed with funding from the National Science Foundation (NSF‐funded) and 22 using textbooks developed by commercial publishers (publisher‐generated). Results indicate that both sets of teachers placed significantly higher emphasis on Number and Operation, often at the expense of other content strands. Location of topics within a textbook represented an oversimplified explanation of what mathematics gets taught or omitted. Most teachers using an NSF‐funded curriculum taught content intended for students in a different (lower) grade, and both sets of teachers supplemented with skill‐building and “practice” worksheets. Implications for documenting teachers' “fidelity of implementation” ( National Research Council, 2004 ) are offered.  相似文献   

19.
Reformers seeking to increase student understanding and interest are looking to collaborative partnerships to support improved science, technology, engineering, and mathematics (STEM) teaching. At the college level, partnerships across colleges are encouraged by reformers in order to provide all students with strong content understanding, model recommended practices for future teachers, and increase participation by underrepresented groups in STEM careers. Collaborative curriculum development, however, is not a trivial undertaking and success is not guaranteed. A better understanding of how partners with different backgrounds interact and what types of instructional changes can be expected from initial attempts will facilitate this potentially powerful approach to instructional change. In this project, 2 engineers and 2 science educators worked jointly to develop a design‐based core engineering course to meet the needs and interests of future engineers and science educators. Interaction among planners and development progress were documented by written meeting records and reflections, emails, and records of planning stages and products. Analysis characterized interactions between engineers and educators and the resulting instructional changes. In spite of a strong interest in partners' topics and mutual goals, specialized language and professional cultural differences presented obstacles to understanding and development progress. Also described are the types of instructional changes reasonable to expect in initial development efforts.  相似文献   

20.
Intense focus on student achievement results in mathematics and science has brought about claims that K‐12 teachers should be better prepared to teach basic concepts in these disciplines. The focus on teachers' mathematics and science content knowledge has been met by efforts to increase teacher knowledge through funded national initiatives focusing on mathematics and science. The purpose of the present study was to look across projects in the National Science Foundation's Math and Science Partnership Program to determine how partnerships developed processes for measuring growth in teacher content knowledge. Pre‐ and post‐testing was the most common process for measuring growth in content knowledge, with 63% of the mathematics and 78% of the science teachers showing significant gains in content knowledge. A notable difference was found between teacher outcomes when the Learning Mathematics for Teaching instrument was used in comparison with the use of other instruments measuring teacher content knowledge growth. Results revealed two pathways for promoting teacher content knowledge growth: content explicit, where the goal of growth in teacher content knowledge was explicit in the activity, and content embedded, where the goal of growth in teacher content knowledge was embedded in the activity. As a result of the analysis, a framework demonstrating the interrelationships among processes and pathways was developed. 1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号