首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title compound, C23H15Cl2NO3, crystallizes with two independent mol­ecules in the asymmetric unit. The chroman­one moiety consists of a benzene ring fused with a six‐membered heterocyclic ring which adopts a sofa conformation. The five‐membered spiro­isoxazoline ring is in an envelope conformation. The p‐chloro­phenyl rings bridged by the five‐membered ring are nearly perpendicular to each other. The chromanone moiety of one mol­ecule packs into the cavity formed by the p‐chloro­phenyl rings of a second mol­ecule through the formation of C—H?π interactions. The structure is stabilized by weak C—H?O, C—H?Cl and C—H?π interactions.  相似文献   

2.
The structure of the title compound, C18H20ClN3O5, displays the characteristic features of azo­benzene derivatives. Intramolecular N—H⋯O, weak intramolecular C—H⋯O, and intermolecular O—H⋯O and C—H⋯O interactions influence the conformation of the mol­ecules and the crystal packing. Intermolecular hydrogen bonds link the mol­ecules into infinite chains, and the title compound adopts the keto–amine tautomeric form. The azo­benzene moiety of the mol­ecule has a trans configuration. The mol­ecule is not planar, and the dihedral angle between the two phenyl rings is 35.6 (2)°.  相似文献   

3.
The title compound, C21H23ClN4O2·0.5H2O, contains two independent mol­ecules in the asymmetric unit. In each mol­ecule the piperazine ring adopts a chair conformation; the deviations of the piperazine N atoms from the best plane through the remaining four C atoms are ?0.678 (3) and 0.662 (3) Å in mol­ecule A, and 0.687 (3) and ?0.700 (3) Å in mol­ecule B. The mol­ecules are linked by two hydrogen bonds of the O—H?N type involving the O atom of the water mol­ecule of crystallization.  相似文献   

4.
The title compound, C36H49NO5·H2O, has the outer two six‐membered rings of the steroid nucleus in chair conformations. The central ring B of the steroid nucleus is in an 8β,9α‐half‐chair conformation, while ring D of the steroid adopts a slightly distorted 13β,14α‐half‐chair conformation. The piperidine ring is in a chair conformation. The methoxy­benzyl­idene moiety has an E configuration with respect to the carbonyl group at position 17. Intermolecular O—H?O and O—H?N hydrogen bonds link the steroid and water mol­ecules into chains which run parallel to the b axis.  相似文献   

5.
The asymmetric unit of the title compound, C25H30FN3O·0.5CH3OH, contains four symmetry‐independent steroid and two methanol mol­ecules. The conformations of the independent steroid mol­ecules are very similar. Intermolecular O—H⋯O hydrogen bonds create two independent chains, each of which links two of the independent steroid mol­ecules plus one methanol mol­ecule via a co‐operative O—H⋯O—H⋯O—H pattern. Intermolecular C—H⋯O and C—H⋯F interactions are also observed.  相似文献   

6.
The structure of the title compound, C12H9N5O4, reveals an almost planar mol­ecule (r.m.s. deviation = 0.061 Å), in which the interplanar angle between the phenyl rings is 5.7 (1)° and the largest interplanar angle is that between the phenyl ring and the nitro group of one of the 4‐nitro­phenyl substituents [8.8 (3)°]. The observed mol­ecular conformation suggests a delocalization of π‐electrons extended over the diazo­amine group and the terminal aryl substituents. Intermolecular N—H⃛O interactions between the twofold screw‐related mol­ecules give rise to helical chains along the [010] direction. Intermolecular C—H⃛O interactions then generate sheets of mol­ecules in the (10) plane, and these sheets are held together by N⃛C and O⃛O π–π interactions.  相似文献   

7.
In the title cocrystal, 2‐aminopyrimidine–(+)‐camphoric acid (1/1), C4H5N3·C10H16O4, the 2‐amino­pyrimidine forms two eight‐membered hydrogen‐bonded rings with two different camphoric acid mol­ecules. This results in infinite wave‐like chains of mol­ecules in which neighbouring chains are connected by weak C—H?O contacts. The five‐membered ring in the acid mol­ecule adopts a half‐chair conformation.  相似文献   

8.
The ent‐kaurene diterpene in the title compound, 7‐epican­dicandiol ethanol solvate, C20H32O2·C2H6O, was isolated from the aerial parts of Sideritis ozturkii Aytaç & Aksoy. The mol­ecule has the usual conformation and stereochemistry found in related ent‐kaurene derivatives. The methyl‐substituted ring junction has a trans arrangement and the other junction is cis. The six‐membered rings have chair or slightly distorted chair conformations and the five‐membered ring has an envelope conformation. Inter­molecular hydrogen bonds link the 7‐epicandicandiol and ethanol mol­ecules into two‐dimensional networks, part of which comprise co‐operative O—H⋯O—H⋯O—H⋯ chains.  相似文献   

9.
3β‐Hydr­oxy‐7‐drimen‐12,11‐olide hemihydrate, C15H22O3·0.5H2O, (I), has two sesquiterpene mol­ecules and one water mol­ecule in the asymmetric unit. The OH groups of both mol­ecules and both H atoms of the water mol­ecule are involved in near‐linear inter­molecular hydrogen bonds, having O⋯O distances in the range 2.632 (3)–2.791 (2) Å. 3β‐Acet­oxy‐7‐drimen‐12,11‐olide, C17H24O4, (II), has its ring system in very nearly the same conformation as the two mol­ecules of (I).  相似文献   

10.
Due to steric repulsions, the cyclo­hexane ring in the title compound, C23H24N2O5·H2O, shows some bond‐length abnormalities and adopts a chair conformation. The pyrimidine and cyclo­hexane rings are approximately perpendicular to each other, and the phenyl rings are equatorial. C—H?π and N—H?O intermolecular interactions, as well as C—H?O inter‐ and intramolecular interactions, occur between the mol­ecules. In addition to van der Waals interactions, the water mol­ecule interacts with the pyrimidine­trione ring to stabilize the structure.  相似文献   

11.
In the title compound, C31H40N2O·H2O, the outer two six‐membered rings are in chair conformations, while the central ring is in an 8β,9α‐half‐chair conformation. The five‐membered ring adopts a 13β‐envelope conformation and the cyano­benzyl­idene moiety has an E configuration with respect to the hydroxyl group at position 17. The steroid nuclei are linked by intermolecular O—H?O and O—H?N hydrogen bonds to form a molecular network. The molecular packing has an interesting feature, with the steroids aligned parallel to the b axis, forming a closed loop through hydrogen bonds linked via water mol­ecules.  相似文献   

12.
The mol­ecule of the title compound {systematic name: di‐μ‐sulfido‐bis[di­aqua(1,4,7,10,13,16‐hexaoxa­cyclo­octade­cane‐κ6O)barium(II)] bis­[1,2‐benzisothiazol‐3(2H)‐one 1,1‐dioxide]}, [Ba2S2(C12H24O6)2(H2O)4](C7H5NO3S)2, lies on an inversion centre. The BaII atom encapsulated by the 18‐crown‐6 ring is coordinated by the six O atoms of the crown, two water O atoms and two bridging S atoms. The four‐membered ring composed of the BaII atoms and the bridging S atoms makes a dihedral angle of 67.1 (1)° with the crown‐ether ring. The aromatic ring system of the saccharin moiety is essentially planar. The packing is built up from layers of the mol­ecules and is stabilized by three intermolecular O—H?O hydrogen bonds.  相似文献   

13.
The title compound, [HgBr(C7H4NO4)(H2O)], was obtained by the reaction of an aqueous solution of mercury(II) bromide and pyridine‐2,6‐di­carboxylic acid (picolinic acid, dipicH2). The shortest bond distances to Hg are Hg—Br 2.412 (1) Å and Hg—N 2.208 (5) Å; the corresponding N—Hg—Br angle of 169.6 (1)° corresponds to a slightly distorted linear coordination. There are also four longer Hg—O interactions, three from dipicH? [2.425 (4) and 2.599 (4) Å within the asymmetric unit, and 2.837 (4) Å from a symmetry‐related mol­ecule] and one from the bonded water mol­ecule [2.634 (4) Å]. The effective coordination of Hg can thus be described as 2+4. The mol­ecules are connected to form double‐layer chains parallel to the y axis by strong O—H?O hydrogen bonds between carboxylic acid groups of neighbouring mol­ecules, and by weaker hydrogen bonds involving both H atoms of the water mol­ecule and the O atoms of the carboxylic acid groups.  相似文献   

14.
The crystal structure of the title mixed azine, C17H17ClN2O, contains four independent mol­ecules, AD, and mol­ecule B is disordered. All four mol­ecules have an N—N gauche conformation, with C—N—N—C torsion angles of 136.5 (4), 137.0 (4), ?134.7 (4) and ?134.7 (4)°, respectively. The phenyl rings are also somewhat twisted with respect to the plane defined by Cipso and the imine bond. On average, the combined effect of these twists results in an angle of 64.7° between the best planes of the two phenyl rings. Arene–arene double T‐contacts are the dominant intermolecular inter­action. The methoxy‐substituted phenyl ring of one azine mol­ecule interacts to form a T‐contact with the methoxy‐substituted phenyl ring of an adjacent mol­ecule and, similarly, two chloro‐substituted phenyl rings of neighboring mol­ecules interact to form another T‐contact. The only exception is for mol­ecule B, for which the disorder leads to the formation of T‐­contacts between methoxy‐ and chloro‐substituted phenyl rings. The prevailing structural motif of T‐contact formation between like‐substituted arene rings results in a highly dipole‐parallel‐aligned crystal structure.  相似文献   

15.
In the title compound, C13H13N5O4·H2O (4,5′‐cyclo­wyosine·H2O), the cyclization forces a syn arrangement of the aglycon with respect to the sugar moiety. The ribo­furan­ose part of the mol­ecule displays a β‐d configuration with an envelope C1′‐endo pucker. The mol­ecules are arranged in columns along the short a axis and are linked to water mol­ecules through O—H?O and O—H?N hydrogen bonds.  相似文献   

16.
The title mol­ecule, C13H13N3O3·H2O, is in the form of a mono­hydrated zwitterion. The tetra­hydro­pyridinium ring adopts an envelope conformation and is nearly coplanar with the plane of the imidazoline ring. The water solvate mol­ecule plays an important role as a bridge between zwitterions, forming molecular chains running along the c direction, which are interconnected by N—H?O hydrogen bonds into molecular ribbons. The crystal packing is further stabilized by another N—H?O and one O—H?N hydrogen bond, which interconnect the molecular ribbons.  相似文献   

17.
The crystal structure of the title compound, [Cu2(C12H7­N2O)2]·H2O, shows that this dinuclear complex has shorter Cu—N, Cu—O and Cu—Cu distances within the coordination sphere than similar reported complexes. The complex mol­ecule is located on a centre of symmetry and the water mol­ecule is on a twofold axis of the space group C2/c. The discrete complex mol­ecules are extended into a two‐dimensional supramolecular array viaπ–π stacking interactions, intermolecular Cu⋯Cu interactions and C—H⋯O hydrogen bonds.  相似文献   

18.
The molecule of the title compound, C8H11NO2, contains a strained bicyclic system with a significantly twisted imide chromophore. The five‐membered ring fragment containing the imide function is strongly puckered and adopts a half‐chair conformation. The six‐membered ring has a slightly distorted chair conformation. The mol­ecules are joined by strong N—H?O and weak C—H?O hydrogen bonds into infinite chains.  相似文献   

19.
The title compound, C20H16N2O, has two mol­ecules in the asymmetric unit and the crystal structure shows that the central pyridine ring of each mol­ecule has a flat boat conformation. The terminal C atom in one of the mol­ecules is disordered over two positions, with relative occupancies of 0.594 (14) and 0.398 (14). Intermolecular C—H?N and C—H?π interactions and π–π stacking, along with intramolecular C—H?N and C—H?π interactions, help to stabilize the structure.  相似文献   

20.
In the title compound, C13H16O4, the cyclo­hexene rings adopt a sofa conformation. Adjacent mol­ecules are connected by C—H?O intermolecular interactions. Each mol­ecule is characterized by O—H?O intramolecular hydrogen bonds. The anti arrangement of the enolic OH group and the carbonyl O atom in the solid state is similar to the anti arrangement of the NH and carbonyl groups in indigo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号