首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1‐tert‐Butyl‐1H‐1,2,4‐triazole (tbtr) was found to react with copper(II) chloride or bromide to give the complexes [Cu(tbtr)2X2]n and [Cu(tbtr)4X2] (X = Cl, Br). 1‐tert‐Butyl‐1H‐tetrazole (tbtt) reacts with copper(II) bromide resulting in the formation of the complex [Cu3(tbtt)6Br6]. The obtained crystalline complexes as well as free ligand tbtr were characterized by elemental analysis, IR spectroscopy, thermal and X‐ray analyses. For free ligand tbtr, 1H NMR and 13C NMR spectra were also recorded. In all the complexes, tbtr and tbtt act as monodentate ligands coordinated by CuII cations via the heteroring N4 atoms. The triazole complexes [Cu(tbtr)2Cl2]n and [Cu(tbtr)2Br2]n are isotypic, being 1D coordination polymers, formed at the expense of single halide bridges between neighboring copper(II) cations. The isotypic complexes [Cu(tbtr)4Cl2] and [Cu(tbtr)4Br2] reveal mononuclear centrosymmetric structure, with octahedral coordination of CuII cations. The tetrazole compound [Cu3(tbtt)6Br6] is a linear trinuclear complex, in which neighboring copper(II) cations are linked by single bromide bridges.  相似文献   

2.
The title mol­ecule, C16H22O2, reveals Ci point symmetry in the crystal structure. The structure was disordered. The pyran ring is not planar; the O atom lies significantly out of the least‐squares plane (ten times the r.m.s. deviation of all six atoms).  相似文献   

3.
The title compounds, [CuFe2(C5H5)2(C9H8O2)2], (I), and [CuFe4(C5H5)4(C13H9O2)2], (II), are four‐coordinate square‐planar copper(II) complexes with two bidentate 1‐ferrocenylbutane‐1,3‐dionate or 1,3‐diferrocenylpropane‐1,3‐dionate ligands, respectively. The copper ion in (I) lies on an inversion centre, with one‐half of the mol­ecule in the asymmetric unit, while in (II), there are two independent half mol­ecules in the asymmetric unit, with the copper ions also situated on inversion centres. The ferrocene substituents in (I) are in an anti arrangement. The mol­ecules assemble in the crystal structure in layers with ferrocene groups at the surface. The pairs of ferrocene substituents on each ligand in complex (II) are syn and these adopt an anti arrangement with respect to the pair on the other diketonate ligand. As found in (I), complexes assemble in a layered structure with ferrocene‐coated surfaces.  相似文献   

4.
The crystal and molecular structures of bis(η5‐2,4,7‐tri­methyl­indenyl)­cobalt(II), [Co(C12H13)2], (I), and rac‐2,2′,4,4′,7,7′‐hexamethyl‐1,1′‐biindene, C24H26, (II), are reported. In the crystal structure of (I), the Co atom lies on an inversion centre and the structure represents the first example of a bis(indenyl)cobalt complex exhibiting an eclipsed indenyl conformation. The (1R,1′R) and (1S,1′S) enantiomers of the three possible stereoisomers of (II), which form as by‐products in the synthesis of (I), cocrystallize in the monoclinic space group P21/c. In the unit cell of (II), alternating (1R,1′R) and (1S,1′S) enantiomers pack in non‐bonded rows along the a axis, with the planes of the indenyl groups parallel to each other and separated by 3.62 and 3.69 Å.  相似文献   

5.
At 160 K, one of the Cl atoms in the furanoid moiety of 3‐O‐acetyl‐1,6‐di­chloro‐1,4,6‐tri­deoxy‐β‐d ‐fructo­furan­osyl 2,3,6‐tri‐O‐acetyl‐4‐chloro‐4‐deoxy‐α‐d ‐galacto­pyran­oside, C20H27­Cl3O11, is disordered over two orientations, which differ by a rotation of about 107° about the parent C—C bond. The conformation of the core of the mol­ecule is very similar to that of 3‐O‐acetyl‐1,4,6‐tri­chloro‐1,4,6‐tri­deoxy‐β‐d ‐tagato­furanos­yl 2,3,6‐tri‐O‐acetyl‐4‐chloro‐4‐deoxy‐α‐d ‐galacto­pyran­oside, particularly with regard to the conformation about the glycosidic linkage.  相似文献   

6.
The aldehyde moiety in the title complex, chloro(2‐pyridinecarboxaldehyde‐N,O)(2,2′:6′,2′′‐terpyridine‐κ3N)ruthenium(II)–chloro­(2‐pyridine­carboxyl­ic acid‐N,O)(2,2′:6′,2′′‐ter­pyridine‐κ3N)­ruthenium(II)–perchlorate–chloro­form–water (1.8/0.2/2/1/1), [RuCl­(C6H5NO)­(C15H11N3)]1.8[RuCl­(C6H5­NO2)(C15H11N3)]0.2­(ClO4)2·­CHCl3·­H2O, is a structural model of substrate coordination to a transfer hydrogenation catalyst. The title complex features two independent RuII complex cations that display very similar distorted octahedral coordination provided by the three N atoms of the 2,2′:6′,2′′‐ter­pyridine ligand, the N and O atoms of the 2‐pyridine­carbox­aldehyde (pyCHO) ligand and a chloride ligand. One of the cation sites is disordered such that the aldehyde group is replaced by a 20 (1)% contribution from a carboxyl­ic acid group (aldehyde H replaced by carboxyl O—H). Notable dimensions in the non‐disordered complex cation are Ru—N 2.034 (2) Å and Ru—O 2.079 (2) Å to the pyCHO ligand and O—C 1.239 (4) Å for the pyCHO carbonyl group.  相似文献   

7.
2′‐Substituted 5′,6′,7′,8′‐tetrahydro‐4′H‐spiro[cyclohexane‐1,9′‐[1,2,4]triazolo[5,1‐b]quinazolines] 3a‐d were synthesized by condensation of 3‐substituted 5‐amino‐1,2,4‐triazoles 1a‐d with 2‐cyclohexylidene cyclohexanone 2 in DMF. The compounds 3 were hydrogenated with sodium borohydride in ethanol to give 2′‐substituted cis‐4a',5′,6′,7′,8′,8a'‐hexahydro‐4′H‐spiro[cyclohexane‐1,9′‐[1,2,4]triazolo[5,1‐b]quinazolines] 4a‐d in high yields. The reactions of alkylation, acylation and sulfonylation of the compounds 4 were studied. The structure of the synthesized compounds was determined on the basis of NMR measurements including HSQC, HMBC, NOESY techniques and confirmed by the X‐ray analysis of 6 and 11b . The described synthetic protocols provide rapid access to novel and diversely substituted hydrogenated [1,2,4]triazolo[5,1‐b]quinazolines.  相似文献   

8.
Two related compounds containing ptert‐butyl‐o‐methyl­ene‐linked phenol or phenol‐derived subunits are described, namely 5,5′‐di‐tert‐butyl‐2,2′‐di­hydroxy‐3,3′‐methyl­ene­di­benz­aldehyde, C23H28O4, (I), and 6,6′‐di‐tert‐butyl‐8,8′‐methyl­ene­bis­(spiro­[4H‐1,3‐benzo­di­oxin‐2,1′‐cyclo­hexane]), C35H48O4, (II). Both compounds adopt a `butterfly' shape, with the two phenol or phenol‐derived O atoms in distal positions. Phenol and aldehyde groups in (I) are involved in intramolecular hydrogen bonds and the two dioxin rings in (II) are in distorted half‐chair conformations.  相似文献   

9.
1H, 13C and two‐dimensional NMR analyses were applied to determine the NMR parameters of 6‐(2′,3′‐dihydro‐1′H‐inden‐1′‐yl)‐1H‐indene. The measurements were accomplished with 0.5 mg of the substance, this quantity being sufficient to determine the chemical shifts of all the H and C atoms, and also the appropriate coupling constants and to give the complete NMR resonance assignments of the molecule. The predicted patterns of the four different H atoms of the methylene groups of the indane structural element coincided completely with the complex patterns in the NMR spectra. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
Synthesis of New Heptafulvenes; X-Ray Analysis of ‘8,8-(1′,4′-Dioxotetramethylene)heptafulvene’ (2-(Cyclohepta-2,4,6-trien-1-ylidene)cyclopentane-1,3-dione) Experimental procedures for the synthesis of heptafulvene ( 3a ), 8,8-tetramethylene heptafulvene ( 3c ) and ‘8,8-(1′,4′-dioxotetramethylene) heptafulvene’ (2-(cyclohepta-2,4,6-trien-1-ylidene)-cyclopentane-1,3-dion; 3d ) are described. The most important sequences include a low-temperature reaction of tropylium salts with lithium or Grignard carbenoids (Scheme 1) to give 3a and 3b as well as hydride abstraction from substituted cycloheptatrienes followed by deprotonation to give 3c and 3d . Limitations of these sequences are discussed. Two other heptafulvenes 3h and 3i are available by silylation of heptafulvenolates according to well-known procedures. NMR-Spectroscopic evidence as well as an X-ray analysis of 3d are presented. Compound 3d is a relatively polar heptafulvene with a planarised seven-membered ring as well as a partly delocalized π system.  相似文献   

11.
The conformational features of the title compound, C28H44S6, are compared with previously reported analogous macrocycles. The type of substituent affects considerably the conformation of the macrocycle. A 1H NMR titration of the title compound with AgBF4 indicated the formation of the 1:1 complex, which was not crystallized.  相似文献   

12.
The crystal structure of form III of the title compound, HNAB [systematic name: bis(2,4,6‐trinitro­phenyl)diazene], C12H4N8O12, has finally been solved as a pseudo‐merohedral twin (monoclinic space group P21, rather than the ortho­rhombic space group C2221 suggested by diffraction symmetry) using a dual space recycling method. The significant differences in the room‐temperature densities of the three crystalline forms allow examination of molecular differences due to packing arrangements. An interesting relationship with the stilbene analog, HNS, is discussed. Interatomic separations are compared with other explosives and/or nitro‐containing compounds.  相似文献   

13.
The title compound, C18H14O4, forms a supramolecular structure viaπ–π stacking and weak C—H⋯O and C—H⋯π interactions. The benzo­pyran moiety is almost planar. The benzene ring of the phenyl­methyl acetate substituent is nearly perpendicular to the fused benzene and pyran rings and also to the methyl acetate group.  相似文献   

14.
4′,4″(5″) Di‐tert‐butyldibenzo 18‐crown‐6 (DTBB18C6) was successfully synthesized by SN2 nucleophilic substitution with 4‐tert‐butyl catechol as starting material. Effects of cyclization reagents, solvents, and templates were investigated. Reaction process was monitored by the real‐time online FTIR to study the actual reaction route. The highest DTBB18C6 yield (above 33%) was obtained by using Cs2CO3 as the template, 2,2′‐diethylene glycol ditosylate as the cyclization reagent, and THF as the solvent. From the result of FTIR, four different reaction stages of DTBB18C6 synthesis process were proposed.  相似文献   

15.
In the title compound, [TbCl(C27H35N3)2(H2O)](ClO4)2·2C2H6O, the TbIII ion has a coordination number of eight, composed of two tridentate substituted‐ter­pyridine ligands, a water mol­ecule and a bound Cl? anion. The first coordination shell can be described as a distorted bicapped trigonal prism. The dihedral angles between pyridine rings belonging to the same tpy ligand range from 5.2 (5) to 16.8 (5)°.  相似文献   

16.
The reaction between [PtCl(terpy)]·2H2O (terpy is 2,2′:6′,2′′‐terpyridine) and pyrazole in the presence of two equivalents of AgClO4 in nitromethane yields the title compound, [Pt(C3H4N2)(C15H11N3)](ClO4)2·CH3NO2, as a yellow crystalline solid. Single‐crystal X‐ray diffraction shows that the dicationic platinum(II) chelate is square planar with the terpyridine ligand occupying three sites and the pyrazole ligand occupying the fourth. The torsion angle subtended by the pyrazole ring relative to the terpyridine chelate is 62.4 (6)°. Density functional theory calculations at the LANL2DZ/PBE1PBE level of theory show that in vacuo the lowest‐energy conformation has the pyrazole ligand in an orientation perpendicular to the terpyridine ligand (i.e. 90°). Seemingly, the stability gained by the formation of hydrogen bonds between the pyrazole NH group and the perchlorate anion in the solid‐state structure is sufficient for the chelate to adopt a higher‐energy conformation.  相似文献   

17.
The title compound, [Ru(C6H6NO2)2(C15H11N3)(H2O)]·CH3CN·H2O, is a transfer hydrogenation catalyst supported by nitro­gen‐donor ligands. This octa­hedral RuII complex features rare monodentate coordination of 3‐meth­oxy‐2‐pyridonate ligands and inter­ligand S(6)S(6) hydrogen bonding. Comparison of the title complex with a structural analog with unsubstituted 2‐pyridonate ligands reveals subtle differences in the orientation of the ligand planes.  相似文献   

18.
The title compound, C16H11ClN4O, is an anticonvulsant agent. In the crystal, a particularly short C—H?N intermolecular hydrogen bond is noted [H?N 2.22 (2) Å]. The diazepine ring has a boat conformation.  相似文献   

19.
The asymmetric unit of the title compound, [Zn(C7H5O3)2(C10H8N2)], contains one monomeric zinc complex. The Zn atom is coordinated to one 2,2′‐bipyridyl ligand via both N atoms and to two salicyl­ate anions (Hsal) in a bidentate chelating manner involving carboxyl­ate O‐atom coordination. The complex exhibits a distorted octahedral geometry about the ZnII atom, with the `apical' positions occupied by one of the two N atoms of the bipyridyl ligand and an O atom from one Hsal ligand; the Zn atom is 0.168 (1) Å out of the `basal' plane. Two intramolecular six‐membered hydrogen‐bonded rings are present, generated from interactions between the carboxyl and hydroxyl groups of the salicyl­ate ligands. The crystal packing is governed by weak C—H⋯O and C—H⋯π interactions.  相似文献   

20.
Three related compounds containing a pyrazole moiety with vicinal phenyl rings featuring a methyl­sulfonyl substituent are described, namely 3‐methyl‐1‐[4‐(methyl­sulfonyl)­phenyl]‐5‐phenyl‐1H‐pyrazole, C17H16N2O2S, ethyl 1‐[4‐(methyl­sul­fonyl)­phenyl]‐5‐phenyl‐1H‐pyrazole‐3‐carboxyl­ate, C19H18N2O4S, and 1‐[4‐(methyl­sulfonyl)­phenyl]‐3‐[3‐(morpholino)­phenoxy­methyl]‐5‐phenyl‐1H‐pyrazole, C27H27N3O4S. The design of these compounds was based on celecoxib, a selective cyclo­oxy­genase‐2 (COX‐2) inhibitor, in order to study the influence of various substituents on COX‐2 and 5‐lipoxy­genase (5‐LOX) inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号