首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new mechanism of anionic polymerization of butadiene, radically changing the existing concepts on the structure and properties of the reaction complex, is suggested. It is stated that an elementary chemical process involves excitation into the low-lying triplet state of the living polymer–monomer complex, characterized as a transfer of a charge (electron) and cation (Li+ or Na+) from the terminal unit to the monomer molecule. In the framework of this concept, the probability of chemical bonding is determined by the spin density on the radical centers of reagent molecules. The semiempirical and ab initio 6-31G** calculations have revealed a strong interaction in the ground electronic state of the complex (5-10 kcal/mole) and low energies of the excited triplet levels (< 10 kcal/mole). A mechanism of cis-trans-isomerization in the terminal unit of the living polymer is suggested. The mechanism involves concerted rotation around the C - C bond and migration of Li between the C and C atoms. The new approach is shown to be fruitful for microstructure analysis of polybutadiene in relation to the type of cation and the state of the terminal unit of the living polymer.  相似文献   

2.
A new mechanism is suggested for the anionic polymerization of isoprene. The key moment of this mechanism is thermal electron excitation of the complex of a living polymer with a monomer to the low lying S1 (T1) state involving a charge (electron) and (Li+) cation transfer from the terminal unit to the monomer molecule. It is stated that the probability of chemical bonding depends on the spin density on the radical centers of reactant molecules and on the geometry of the reaction complex. The semiempirical AM1 and ab initio 6-31G* quantum-chemical calculations revealed strong interaction for the ground electronic state of the complex (5-10 kcal/mole) and low energies of the excited triplet levels (<10 kcal/mole).  相似文献   

3.
1,1‐Dilithioethylene is a prototypical carbon–lithium compound that is not known experimentally. All low‐lying singlet and triplet structures of interest were investigated by using high‐level theoretical methods with correlation‐consistent basis sets up to pentuple ζ. The coupled cluster methods adopted included up to full triple excitations and perturbative quadruples. In contrast to earlier studies that predicted the twisted C2v triplet to be the ground state, we found a peculiar planar Cs singlet ground state in the present research. The lowest excited electronic state of 1,1‐dilithioethylene, the twisted Cs triplet, was found to lie 9.0 kcal mol?1 above the ground state by using energy extrapolation to the complete basis set limit. For the planar Cs singlet and twisted Cs triplet states of 1,1‐dilithioethylene, anharmonic vibrational frequencies were reported on the basis of second‐order vibrational perturbation theory. The remarkably low (2050 cm?1) C?H stretching fundamental (the C?H bond near the bridging lithium) of the singlet state was found to have very strong infrared intensity. These highly reliable theoretical findings may assist in the long‐sought experimental identification of 1,1‐dilithioethylene. Using natural bond orbital analysis, we found that lithium bridging structures were strongly influenced by electrostatic effects. All carbon–carbon linkages corresponded to conventional double bonds.  相似文献   

4.
The OH+ cation is a well‐known diatomic for which the triplet (3Σ?) ground state is 50.5 kcal mol?1 more stable than its corresponding singlet (1Δ) excited state. However, the singlet forms a strong donor–acceptor bond to argon with a bond energy of 66.4 kcal mol?1 at the CCSDT(Q)/CBS level, making the singlet ArOH+ cation 3.9 kcal mol?1 more stable than the lowest energy triplet complex. Both singlet and triplet isomers of this molecular ion were prepared in a cold molecular beam using different ion sources. Infrared photodissociation spectroscopy in combination with messenger atom tagging shows that the two spin isomers exhibit completely different spectral signatures. The ground state of ArOH+ is the predicted singlet with a covalent Ar?O bond.  相似文献   

5.
The photoelectron spectrum of the trimethylenemethane (TMM) negative ion is described. The electron affinity of TMM is found from the spectrum to be 0. 431±0.006 eV, and the energy difference between the [(X)\tilde]3 A2\tilde X^3 A'_2 3A′2 and [(b)\tilde]1 A1\tilde b^1 A_1 1A1 states of TMM is determined to be 16.1±0.2 kcal/mol. The energy difference between the lowest energy triplet and singlet states is estimated to be 13–16 kcal/mol. The enthalpy of formation of TMM is measured to be 70±3 kcal/mol, and the C-H bond enthalpy in 2-methylallyl radical is 90±2 kcal/mol. Previously unobserved vibrational frequencies of 425, 915, and 1310 cm−1 are found for the triplet state of TMM, whereas a frequency of 325 cm−1 is found for the singlet state. In addition, an overtone peak is observed for the triplet state at 1455 cm−1, and both states contain peaks that are assigned to bands arising from excited vibrational levels of the ion.  相似文献   

6.
The spatial and electronic structure of styrene and α-methylstyrene monomer molecules and their complexes with living polymers in the ground singlet state (S 0) and excited singlet (S 1) and triplet (T 1) states has been studied by RHF, ROHF/6-31G*, and DH quantum-chemical methods. The mechanism of anionic polymerization is considered in the context of the concept of electronic excitation in an elementary process. The excited states of (S·T)1 biradical type are characterized by low energies (6–15 kcal/mole), which have the sense of activation energies E a of chain propagation. Calculation gave higher values of E a for free C? anions compared to those for C?M+ ion pairs, which indicates that anions show lower chemical activity in the general polymerization process.  相似文献   

7.
Kinetics of polymerization of acrylamide initiated by Thallium(III) perchlorate was investigated in aqueous perchloric acid medium in the temperature range of 55–70°C. The rates of polymerization were measured varying the concentration of the monomer, initiator, and perchloric acid. The rate of polymerization was found to increase with increase of temperature, monomer concentration, initiator concentration, and perchloric acid concentration. The effect of additives like different solvents, surfactants, and retarders on the rate of polymerization was studied. Molecular weights of the polymer were determined by viscometry. The chain transfer constants for the monomer (CM) and that for the solvent dioxan (Cs) were calculated to be 7.33 × 10?3 and 6.66 × 10?3, respectively. From the Arrhenius plot, the overall activation energy (Ea) was calculated to be 10.68 kcal/mol. The energy of initiation was calculated to be 12.36 kcal/mol. Depending on the results obtained, a suitable reaction mechanism has been suggested and a rate equation has been derived.  相似文献   

8.
The low-lying singlet and triplet states of H2CBe and HCBeH are examined using ab inito molecular orbital theory. In agreement with earlier results, the lowest-lying structure of H2CBe has C2v symmetry and is a triplet with one π electron (3 B1). The results presented here suggest that the lowest-energy singlet structure is the (1B1) open-shell singlet, also with C2v symmetry, at least 2.5 kcal/mol higher in energy. The singlet C2v structure with two π electrons (1A1) is 15.9 kcal/mol higher than 3B1. All of these structures are bound with respect to the ground state of methylene and the beryllium atom. In HCBeH, linear equilibrium geometries are found for the triplet (3Σ) and singlet (1Δ) states. The triplet is more stable than the singlet (1Δ) by 35.4 kcal/mol, and is only 2.9 kcal/mol higher in energy than triplet H2 CBe. Since the transition structure connecting these two triplet molecules is found to be 50.2 kcal/mol higher in energy than H2 CBe, both triplet equilibrium species might exist independently. The harmonic vibrational frequencies of all structures are also reported.  相似文献   

9.
Ab initio optimization of a poly-α-methylstyryl sodium (PMSNa) fragment consisting of two eis units yields a triplet state energy which is close to the ground state energy. A new mechanism is proposed for depolymerization of “living” polymers, which implies that an elementary step involves excitation to the low-lying triplet state with a charge transfer and with further bond cleavage. In the reaction structure, electronic excitation occurs with a minor (≈0.5 Å) displacement of the Na+ cation between the last and the last but one monomer units. The reversible polymerization/depolymerization reaction of PMSNa in THF was studied experimentally. The experimental (5.6 kcal/mole) and calculated (7.3 kcal/mole) polymerization enthalpies are in reasonable agreement.  相似文献   

10.
11.
    
Ab initio optimization of a poly-α-methylstyryl sodium (PMSNa) fragment consisting of two eis units yields a triplet state energy which is close to the ground state energy. A new mechanism is proposed for depolymerization of “living” polymers, which implies that an elementary step involves excitation to the low-lying triplet state with a charge transfer and with further bond cleavage. In the reaction structure, electronic excitation occurs with a minor (≈0.5 ?) displacement of the Na+ cation between the last and the last but one monomer units. The reversible polymerization/depolymerization reaction of PMSNa in THF was studied experimentally. The experimental (5.6 kcal/mole) and calculated (7.3 kcal/mole) polymerization enthalpies are in reasonable agreement. Translated from Zhurnal Strukturnoi Khimii, Vol. 41, No. 4, pp. 701-708, July-August, 2000  相似文献   

12.
Irreversible photooxidation based on N–O bond fragmentation is demonstrated for N‐methoxyheterocycles in both the singlet and triplet excited state manifolds. The energetic requirements for bond fragmentation are studied in detail. Bond fragmentation in the excited singlet manifold is possible for ππ* singlet states with energies significantly larger than the N–O bond dissociation energy of ca 55 kcal mol?1. For the * triplet states, N–O bond fragmentation does not occur in the excited state for orbital overlap and energetic reasons. Irreversible photooxidation occurs in the singlet states by bond fragmentation followed by electron transfer. Irreversible photooxidation occurs in the triplet states via bimolecular electron transfer to the donor followed by bond fragmentation. Using these two sensitization schemes, donors can be irreversibly oxidized with oxidation potentials ranging from ca 1.6–2.2 V vs SCE. The corresponding N‐ethylheterocycles are characterized as conventional reversible photooxidants in their triplet states. The utility of these sensitizers is demonstrated by irreversibly generating the guanosine radical cation in buffered aqueous solution.  相似文献   

13.
[NMe4]2[TCNE]2 (TCNE=tetracyanoethenide) formed from the reaction of TCNE and (NMe4)CN in MeCN has νCN IR absorptions at 2195, 2191, 2172, and 2156 cm?1 and a νCC absorption at 1383 cm?1 that are characteristic of reduced TCNE. The TCNEs have an average central C?C distance of 1.423 Å that is also characteristic of reduced TCNE. The reduced TCNE forms a previously unknown non‐eclipsed, centrosymmetric π‐[TCNE]22? dimer with nominal C2 symmetry, 12 sub van der Waals interatomic contacts <3.3 Å, a central intradimer separation of 3.039(3) Å, and comparable intradimer C???N distances of 3.050(3) and 2.984(3) Å. The two pairs of central C???C atoms form a ?C?C???C?C of 112.6° that is substantially greater than the 0° observed for the eclipsed D2h π‐[TCNE]22? dimer possessing a two‐electron, four‐center (2e?/4c) bond with two C???C components from a molecular orbital (MO) analysis. A MO study combining CAS(2,2)/MRMP2/cc‐pVTZ and atoms‐in‐molecules (AIM) calculations indicates that the non‐eclipsed, C2 π‐[TCNE]22? dimer exhibits a new type of a long, intradimer bond involving one strong C???C and two weak C???N components, that is, a 2e?/6c bond. The C2 π‐[TCNE]22? conformer has a singlet, diamagnetic ground state with a thermally populated triplet excited state with J/kB=1000 K (700 cm?1; 86.8 meV; 2.00 kcal mol?1; H=?2 JSa?Sb); at the CAS(2,2)/MBMP2 level the triplet is computed to be 9.0 kcal mol?1 higher in energy than the closed‐shell singlet ground state. The results from CAS(2,2)/NEVPT2/cc‐pVTZ calculations indicate that the C2 and D2h conformers have two different local metastable minima with the C2 conformer being 1.3 kcal mol?1 less stable. The different natures of the C2 and D2h conformers are also noted from the results of valence bond (VB) qualitative diagram that shows a 10e?/6c bond with one C???C and two C???N bonding components for the C2 conformer as compared to the 6e?/4c bond for the D2h conformer with two C???C bonding components.  相似文献   

14.
He‐Rng Zeng 《中国化学》2002,20(12):1546-1551
The photoinduced electron‐transfer reaction of N, N, N', N'‐tetra‐(p‐methylphenyl)‐4,4'‐diamino‐1,1'‐diphenyl ether (TPDAE) and fullerenes (C60/C70) by nanosecond laser flash photolysis occurred in benzonitrile. Transient absorption spectral measurements were carried out during 532 nm laser flash photolysis of a mixture of the fullerenes (C60/C70) and TPDAE. The electron transfer from the TPDAE to excited triplet state of the fullerenes (C60/C70) quantum yields and rate constants of electron transfer from TPDAE to excited triplet state of fullerenes (C60/C70) in benzonitrile have been evaluated by observing the transient absorption bands in the near‐IR region where the excited triplet state, radical anion of fullerenes (C60/C70) and radical cations of TPDAE are expected to appear.  相似文献   

15.
At various levels of theory, singlet and triplet potential energy surfaces (PESs) of Si2CO, which has been studied using matrix isolation infrared spectroscopy, are investigated in detail. A total of 30 isomers and 38 interconversion transition states are obtained at the B3LYP/6‐311G(d) level. At the higher CCSD(T)/6‐311+G(2d)//QCISD/6‐311G(2d)+ZPVE level, the global minimum 11 (0.0 kcal/mol) corresponds to a three‐membered ring singlet O‐cCSiSi (1A′). On the singlet PES, the species 12 (0.2 kcal/mol) is a bent SiCSiO structure with a 1A′ electronic state, followed by a three‐membered ring isomer Si‐cCSiO (1A′) 13 (23.1 kcal/mol) and a linear SiCOSi 14 (1Σ+) (38.6 kcal/mol). The isomers 11, 12, 13 , and 14 possess not only high thermodynamic stabilities, but also high kinetic stabilities. On the triplet PES, two isomers 31 (3B2) (18.8 kcal/mol) and 37 (3A″) (23.3 kcal/mol) also have high thermodynamic and kinetic stabilities. The bonding natures of the relevant species are analyzed. The similarities and differences between C3O, C3S, SiC2O, and SiC2S are discussed. The present results are also expected to be useful for understanding the initial growing step of the CO‐doped Si vaporization processes. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

16.
By means of quantum chemical calculations, the deactivating reactions of triplet excited state C60 by β-carotene were explored from the thermodynamic point of view. The solvent effect on the deactivating mechanisms was also discussed. Primarily, the energy transfer from triplet excited state C60 to β-carotene is feasible both in benzene and water. Secondly, β-carotene may also deactivate triplet excited state C60 through electron transfer from ground state β-carotene to triplet excited state C60 or from triplet excited state β-carotene to triplet excited state C60 in water, while only the latter pathway is thermodynamically favorable in benzene.  相似文献   

17.
Upon laser photolysis of chlorophyll-quinone solutions in ethanol, transients due to the chlorophyll triplet state (Ct), the chlorophyll cation radical (C+) and the semiquinone radical (Q-) can be observed. The rise of Q- parallels the decay of Ct. demonstrating the precursor role of the triplet. The decay of C+ is second order, consistent with reverse electron transfer, and has a rate constant which is independent of quinone potential, and an activation energy of 14kJ/mol due mainly to the temperature dependence of solvent viscosity. Triplet quenching and C+ yield are found to decrease with decreasing quinone potential.  相似文献   

18.
We revisit the singlet–triplet energy gap (ΔEST) of silicon trimer and evaluate the gaps of its derivatives by attachment of a cation (H+, Li+, Na+, and K+) using the wavefunction‐based methods including the composite G4, coupled‐cluster theory CCSD(T)/CBS, CCSDT and CCSDTQ, and CASSCF/CASPT2 (for Si3) computations. Both 1A1 and 3 states of Si3 are determined to be degenerate. An intersystem crossing between both states appears to be possible at a point having an apex bond angle of around α = 68 ± 2° which is 16 ± 4 kJ/mol above the ground state. The proton, Li+ and Na+ cations tend to favor the low‐spin state, whereas the K+ cation favors the high‐spin state. However, they do not modify significantly the ΔEST. The proton affinity of silicon trimer is determined as PA(Si3) = 830 ± 4 kJ/mol at 298 K. The metal cation affinities are also predicted to be LiCA(Si3) = 108 ± 8 kJ/mol, NaCA(Si3) = 79 ± 8 kJ/mol and KCA(Si3) = 44 ± 8 kJ/mol. The chemical bonding is probed using the electron localization function, and ring current analyses show that the singlet three‐membered ring Si3 is, at most, nonaromatic. Attachment of the proton and Li+ cation renders it anti‐aromatic. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
The dication C2H has been investigated by ab initio molecular orbital theory. It is found to have a linear (Dh), structure with a triplet (3σ?g) ground state. Deprotonation to C2H+ is exothermic by 9.8 kcal/mol, but this process is hindered by a large barrier of 65 kcal/mol.  相似文献   

20.
We report the results of a comprehensive 81Br NMR spectroscopic study of the structure and dynamics of two room temperature ionic liquids (RTILs), 1‐butyl‐3‐methylimidazolium bromide ([C4mim]Br) and 1‐butyl‐2,3‐dimethylimidazolium bromide ([C4C1mim]Br), in both liquid and crystalline states. NMR parameters in the gas phase are also simulated for stable ion pairs using quantum chemical calculations. The combination of 81Br spin‐lattice and spin‐spin relaxation measurements in the motionally narrowed region of the stable liquid state provides information on the correlation time of the translational motion of the cation. 81Br quadrupolar coupling constants (CQ) of the two RTILs were estimated to be 6.22 and 6.52 MHz in the crystalline state which were reduced by nearly 50% in the liquid state, although in the gas phase, the values are higher and span the range of 7–53 MHz depending on ion pair structure. The CQ can be correlated with the distance between the cation–anion pairs in all the three states. The 81Br CQ values of the bromide anion in the liquid state indicate the presence of some structural order in these RTILs, the degree of which decreases with increasing temperature. On the other hand, the ionicity of these RTILs is estimated from the combined knowledge of the isotropic chemical shift and the appropriate mean energy of the excited state. [C4C1mim]Br has higher ionicity than [C4mim]Br in the gas phase, while the situation is reverse for the liquid and the crystalline states. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号