首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(methylphenylsiloxane)–poly(methyl methacrylate) graft copolymers (PSXE-g-PMMA) were prepared by condensation reaction of poly(methylphenylsiloxane)-containing epoxy resin (PSXE) with carboxyl-terminated poly(methyl methacrylate) (PMMA), and they were characterized by gel permeation chromatography (GPC), infrared (IR), and 29Si and 13C nuclear magnetic resonance (NMR). The microstructure of the PSXE-g-PMMA graft copolymer was investigated by proton spin–spin relaxation T2 measurements. The thermal stability and apparent activation energy for thermal degradation of these copolymers were studied by thermogravimetry and compared with unmodified PMMA. The incorporation of poly(methylphenylsiloxane) segments in graft copolymers improved thermal stability of PMMA and enhanced the activation energy for thermal degradation of PMMA. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2521–2530, 1998  相似文献   

2.
Blends of isotactic (natural) poly(3‐hydroxybutyrate) (PHB) and poly(methyl methacrylate) (PMMA) are partially miscible, and PHB in excess of 20 wt % segregates as a partially crystalline pure phase. Copolymers containing atactic PHB chains grafted onto a PMMA backbone are used to compatibilize phase‐separated PHB/PMMA blends. Two poly(methyl methacrylate‐g‐hydroxybutyrate) [P(MMA‐g‐HB)] copolymers with different grafting densities and the same length of the grafted chain have been investigated. The copolymer with higher grafting density, containing 67 mol % hydroxybutyrate units, has a beneficial effect on the mechanical properties of PHB/PMMA blends with 30–50% PHB content, which show a remarkable increase in ductility. The main effect of copolymer addition is the inhibition of PHB crystallization. No compatibilizing effect on PHB/PMMA blends with PHB contents higher than 50% is observed with various amounts of P(MMA‐g‐HB) copolymer. In these blends, the graft copolymer is not able to prevent PHB crystallization, and the ternary PHB/PMMA/P(MMA‐g‐HB) blends remain crystalline and brittle. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1390–1399, 2002  相似文献   

3.
Polyethylene‐block‐poly(methyl methacrylate) (PE‐b‐PMMA) was successfully synthesized through the combination of metallocene catalysis with living radical polymerization. Terminally hydroxylated polyethylene, prepared by ethylene/allyl alcohol copolymerization with a specific zirconium metallocene/methylaluminoxane/triethylaluminum catalyst system, was treated with 2‐bromoisobutyryl bromide to produce terminally esterified polyethylene (PE‐Br). With the resulting PE‐Br as an initiator for transition‐metal‐mediated living radical polymerization, methyl methacrylate polymerization was subsequently performed with CuBr or RuCl2(PPh3)3 as a catalyst. Then, PE‐b‐PMMA block copolymers of different poly(methyl methacrylate) (PMMA) contents were prepared. Transmission electron microscopy of the obtained block copolymers revealed unique morphological features that depended on the content of the PMMA segment. The block copolymer possessing 75 wt % PMMA contained 50–100‐nm spherical polyethylene lamellae uniformly dispersed in the PMMA matrix. Moreover, the PE‐b‐PMMA block copolymers effectively compatibilized homopolyethylene and homo‐PMMA at a nanometer level. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3965–3973, 2003  相似文献   

4.
The stress–strain diagrams and ultimate tensile properties of uncompatibilized and compatibilized hydrogenated polybutadiene‐block‐poly(methyl methacrylate) (HPB‐b‐PMMA) blends with 20 wt % poly(methyl methacrylate) (PMMA) droplets dispersed in a low‐density polyethylene (LDPE) matrix were studied. The HPB‐b‐PMMA pure diblock copolymer was prepared via controlled living anionic polymerization. Four copolymers, in terms of the molecular weights of the hydrogenated polybutadiene (HPB) and PMMA sequences (22,000–12,000, 63,300–31,700, 49,500–53,500, and 27,700–67,800), were used. We demonstrated with the stress–strain diagrams, in combination with scanning electron microscopy observations of deformed specimens, that the interfacial adhesion had a predominant role in determining the mechanism and extent of blend deformation. The debonding of PMMA particles from the LDPE matrix was clearly observed in the compatibilized blends in which the copolymer was not efficiently located at the interface. The best HPB‐b‐PMMA copolymer, resulting in the maximum improvement of the tensile properties of the compatibilized blend, had a PMMA sequence that was approximately half that of the HPB block. Because of the much higher interactions encountered in the PMMA phase in comparison with those in HPB (LDPE), a shorter sequence of PMMA (with respect to HPB but longer than the critical molecular weight for entanglement) was sufficient to favor a quantitative location of the copolymer at the LDPE/PMMA interface. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 22–34, 2005  相似文献   

5.
Copolymers of N-vinylbenzyl N-methyl pyrrolidinium chloride (VBMPC) and methyl methacrylate, PVBMPC-co-poly(methyl methacrylate) (PMMA), were synthesized by free-radical copolymerization and proved to be prone to crosslinking as a result of the reaction of methyl ester groups with benzyl methyl pyrrolidinium chloride (BMPC) moieties at temperatures higher than 110 °C. When the VBMPC content was lower than 20 wt %, these copolymers were miscible with homo-PMMA. Blends of homo-PMMA and PVBMPC-co-PMMA fully could be cured above 150 °C, when the molecular weight of PMMA exceeded 10,000 and the VBMPC content of the copolymer was higher than 5 wt %. This reaction was carried out to crosslink selectively the PMMA microdomains of PMMA-b-poly(isooctyl acrylate) (PIOA)-b-PMMA (MIM) triblock copolymers to explain the mechanism for the mechanical failure of fully (meth)acrylic thermoplastic elastomers. Comparison of the ultimate tensile properties of MIM block copolymers, when the dispersed PMMA phases and PIOA matrix were crosslinked, led to the conclusion that the ductile failure of the hard PMMA microdomains rather than the elastic failure of the PIOA matrix was the reason for the mechanical failure of MIM triblocks. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4402–4411, 1999  相似文献   

6.
Reversible addition‐fragmentation chain transfer copolymerization of dimethylaminoethyl acrylate (DMAEA) and methyl acrylate (MA) and their methacrylate counterparts (MMA) has been performed with good control over molecular weight and polydispersity. A screening in composition of copolymers has been performed from 0 to 75% of MA (or MMA). The behavior of these pH and temperature‐sensitive copolymers has been studied in aqueous solution by measuring the cloud point (CP) and the acid dissociation constants (pKa). The higher incorporation of the hydrophobic monomer in the copolymer resulted in an increase in the pKa values due to the larger distance between charges thus facilitating the protonation of adjacent nitrogens for both, the acrylate and methacrylate derivatives. The CP behavior of the copolymers has been studied in pure water and the CP values have been found to be irreproducible for the acrylate polymers, as a consequence of the self‐hydrolysis of DMAEA. Hence, kinetic studies have been performed to quantify the degree of self‐hydrolysis at different temperatures and polymer concentrations to explore the full potential and application of these versatile polymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3333–3338  相似文献   

7.
The miscibility of tetramethylpolycarbonate (TMPC) blends with styrenic copolymers containing various methacrylates was examined, and the interaction energies between TMPC and methacrylate were evaluated from the phase‐separation temperatures of TMPC/copolymer blends with lattice‐fluid theory combined with a binary interaction model. TMPC formed miscible blends with styrenic copolymers containing less than a certain amount of methacrylate, and these miscible blends always exhibited lower critical solution temperature (LCST)‐type phase behavior. The phase‐separation temperatures of TMPC blends with copolymers such as poly(styrene‐co‐methyl methacrylate), poly(styrene‐co‐ethyl methacrylate), poly(styrene‐con‐propyl methacrylate), and poly(styrene‐co‐phenyl methacrylate) increase with methacrylate content, go through a maximum, and decrease, whereas those of TMPC blends with poly(styrene‐con‐butyl methacrylate) and poly(styrene‐co‐cyclohexyl methacrylate) always decrease. The calculated interaction energy for a copolymer–TMPC pair is negative and increases with the methacrylate content in the copolymer. This would seem to contradict the prediction of the binary interaction model, that systems with more favorable energetic interactions have higher LCSTs. A detailed inspection of lattice‐fluid theory was performed to explain such phase behavior. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1288–1297, 2002  相似文献   

8.
A–B–A block copolymers which consist of poly(norbornene‐co‐1‐octene) and atactic polypropylene (PP) segments were synthesized by using ansa‐fluorenylamidotitanium complex as a catalyst varying the ratio of norbornene, 1‐octene, and propylene. The copolymer was obtained quantitatively with high molecular weight (>100,000) and narrow molecular weight distribution (polydispersity index, <1.5). A–B block copolymers of poly(norbornene‐co‐1‐octene) and poly(methyl methacrylate) (PMMA) was also obtained by the same procedure. Mechanical and optical properties of these copolymer films, which were obtained by solution casting process, were also investigated. Introduction of PP soft segment greatly improved mechanical properties, keeping their high transparency. Introduction of PMMA block also increased the tensile strength. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 267–271  相似文献   

9.
A series of amphiphilic thermoresponsive copolymers was synthesized by group transfer polymerization. Seven copolymers were prepared based on the nonionic hydrophobic n‐butyl methacrylate (BuMA), the ionizable hydrophilic and thermoresponsive 2‐(dimethylamino)ethyl methacrylate (DMAEMA) and the nonionic hydrophilic poly(ethylene glycol)methyl methacrylate (PEGMA). In particular, one diblock copolymer and six tricomponent copolymers of different architectures and compositions, one random and five triblock copolymers, were synthesized. The polymers and their precursors were characterized in terms of their molecular weight and composition using gel permeation chromatography and proton nuclear magnetic resonance spectroscopy, respectively. Aqueous solutions of the polymers were studied by turbidimetry, hydrogen ion titration, and light scattering to determine their cloud points, pKas, and hydrodynamic diameters and investigate the effect of the polymers' composition and architecture. The thermoresponsive behavior of the copolymers was also studied. By increasing the temperature, all polymer solutions became more viscous, but only one polymer, the one with the highest content of the hydrophobic BuMA, formed a stable physical gel. Interestingly, the thermoresponsive behavior of these triblock copolymers was affected not only by the terpolymers' composition but also by the terpolymers' architecture. These findings can facilitate the design and engineering of injectable copolymers for tissue engineering that could enable the in situ formation of physical gels at body temperature. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 775–783, 2010  相似文献   

10.
Polymer nanoporous materials with periodic cylindrical holes were fabricated from microphase‐separated structure of diblock copolymers consisting of a radiation‐crosslinking polymer and a radiation‐degrading polymer through simultaneous crosslinking and degradation by γ‐irradiation. A polybutadiene‐block‐poly(methyl methacrylate) (PB‐b‐PMMA) diblock copolymer film that self‐assembles into hexagonally packed poly(methyl methacrylate) cylinders in polybutadiene matrix was irradiated with γ‐rays. Solubility test, IR spectroscopy, and TEM and SEM observations for this copolymer film in comparison with a polystyrene‐block‐poly(methyl methacrylate) diblock copolymer film revealed that poly(methyl methacrylate) domains were removed by γ‐irradiation and succeeding solvent washing to form cylindrical holes within polybutadiene matrix, which was rigidified by radiation crosslinking. Thus, it was demonstrated that nanoporous materials can be prepared by γ‐irradiation, maintaining the original structure of PB‐b‐PMMA diblock copolymer film. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5916–5922, 2007  相似文献   

11.
Graft and star copolymers having poly(methacrylate) backbone and ethylene–propylene random copolymer (EPR) branches were successfully synthesized by radical copolymerization of an EPR macromonomer with methyl methacrylate (MMA). EPR macromonomers were prepared by sequential functionalization of vinylidene chain‐end group in EPR via hydroalumination, oxidation, and esterification reactions. Their copolymerizations with MMA were carried out with monofunctional and tetrafunctional initiators by atom transfer radical polymerization (ATRP). Gel‐permeation chromatography and NMR analyses confirmed that poly(methyl methacrylate) (PMMA)‐g‐EPR graft copolymers and four‐arm (PMMA‐g‐EPR) star copolymers could be synthesized by controlling EPR contents in a range of 8.6–38.1 wt % and EPR branch numbers in a range of 1–14 branches. Transmission electron microscopy of these copolymers demonstrated well‐dispersed morphologies between PMMA and EPR, which could be controlled by the dispersion of both segments in the range between 10 nm and less than 1 nm. Moreover, the differentiated thermal properties of these copolymers were demonstrated by differential scanning calorimetry analysis. On the other hand, the copolymerization of EPR macromonomer with MMA by conventional free radical polymerization with 2,2′‐azobis(isobutyronitrile) also gave PMMA‐g‐EPR graft copolymers. However, their morphology and thermal property remarkably differed from those of the graft copolymers obtained by ATRP. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5103–5118, 2005  相似文献   

12.
We report a novel strategy for incorporation of titanium dioxide (TiO2) particles into poly(methyl methacrylate) (PMMA) to exploit high refractive and transparent organic–inorganic hybrid materials. Formation of TiO2 particles of around 20 nm was conducted within hydrophilic core of block copolymer micelles of poly(methyl methacrylate‐block‐acrylic acid) (PMMA‐b‐PAA) in toluene via sol–gel process from titanium isopropoxide and hydrochloric acid. Subsequently, incorporation of TiO2 particles into PMMA matrix was carried out by casting toluene solution of TiO2 precursor‐loaded copolymer micelles, prepared from PMMA350b‐PAA93 and the precursor of mole ratio Ti4+/carboxyl 4.0, and PMMA. Hybrid films of TiO2/PMMA exhibited high transparency to achieve transmission over 87% at 500 nm at 30 wt % of TiO2 content. The refractive index of resulting hybrid films at 633 nm linearly increased with TiO2 content to attain 1.579 at 30 wt % TiO2, which was 0.1 higher than that of PMMA. Cross‐sectional transmission electron microscope images of TiO2/PMMA hybrid films showed existence of TiO2 clusters less than 100 nm, which were probably formed by aggregation or agglutination of TiO2 particles during a drying process. It was also observed that decomposition temperature of the hybrid films elevated with increasing TiO2 content. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
We investigate the compatibilizing performance of a random copolymer in the melt state, using transmission electron microscopy. Blends of polystyrene (PS) and poly(methyl methacrylate) (PMMA) are chosen as a model system, and a random copolymer of styrene and methyl methacrylate (SMMA) with 70 wt % styrene is used as a compatibilizer. From TEM photographs it is clear that SMMA moves to the interface between PS and PMMA domains during melt mixing, and forms encapsulating layers. However, the characteristic size of the dispersed phase increases gradually with annealing time for all blend systems studied. This demonstrates that the encapsulating layer of SMMA does not provide stability against static coalescence, which calls into question the effectiveness of random copolymers as practical compatibilizers. We interpret the encapsulation by random copolymers in terms of a simple model for ternary polymer blends. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2835–2842, 1997  相似文献   

14.
A series of random copolymers, composed of 1H,1H‐perfluorooctyl methacrylate (FOMA) and 2‐dimethylaminoethyl methacrylate (DMAEMA) were prepared as stabilizers for the dispersion polymerization of methyl methacrylate in supercritical CO2 (scCO2). Free‐flowing, spherical poly(methyl methacrylate) (PMMA) particles were produced in high yield by the effective stabilization of poly(FOMA‐co‐DMAEMA) containing 34–67 w/w % (15–41 m/m %) FOMA structural units. Less stabilized but micron‐sized discrete particles could be obtained even with 25 w/w % (10 m/m %) FOMA stabilizer. The result showed that the composition of copolymeric stabilizers had a dramatic effect on the size and morphology of PMMA. The particle size was controllable with the surfactant concentration. The effect of the monomer concentration and the initial pressure on the polymerization was also investigated. The dry polymer powder obtained from dispersion polymerization could be redispersed to form stable aqueous latexes in an acidic buffered solution (pH = 2.1) by an electrostatic stabilization mechanism due to the ionization of DMAEMA units in the stabilizer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1365–1375, 2008  相似文献   

15.
Methyl methacrylate (MMA)/tert‐butyl methacrylate (tBMA) gradient copolymers having linear and hyperbolic composition profiles were synthesized. These special copolymer products were achieved via a model‐based computer‐controlled semibatch atom transfer radical copolymerization (ATRcoP) process. A simple ATRcoP model was developed based on the terminal model. The equilibrium constants in the ATRP of MMA and tBMA were estimated by the data correlation. The model was verified by batch experiments and was found to give good correlation for the polymerization rate, molecular weight, and copolymer composition data. The model coupled with a reactor model was then applied to the semibatch ATRcoP and was used to calculate comonomer feeding rates for the targeted gradient composition profiles. It was found that the experimental monomer conversion, molecular weight, and cumulative copolymer composition were in good agreement with their targeted theoretical values. The gradient copolymers had low polydispersities close to 1.1. This work demonstrated the feasibility of the model‐based semibatch ATRcoP in fine‐tuning gradient copolymer composition profiles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 69–79, 2009  相似文献   

16.
The grafting reaction of methyl methacrylate onto polybutadiene (PB) was investigated with different chromatographic techniques, including high‐performance liquid chromatography (HPLC) and online coupled two‐dimensional liquid chromatography. As a result of the grafting reaction, a complex mixture of nongrafted PB, the graft copolymer PB‐g‐PMMA [where PMMA is poly(methyl methacrylate)], and the PMMA homopolymer was formed. The complete separation of all the products of the grafting reaction was achieved with gradient HPLC. By the combination of gradient HPLC and size exclusion chromatography in a fully automated two‐dimensional chromatography setup, the complex distributions of the chemical composition and molar mass were fingerprinted simultaneously. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3143–3148, 2003  相似文献   

17.
Thin binary blends of poly(styrene‐b‐methyl methacrylate) (PS‐PMMA) block copolymers in films where the lamellar thickness of one domain is controlled while preserving the thickness of the other domain were demonstrated without microphase separation. One of the block copolymers used here was short and symmetric, and the other was long and asymmetric; the molecular weights of the PMMA block chains in the constituents were similar. A random copolymer brush was introduced and film thickness and composition of brush were adjusted to induce perpendicular orientation in thin film. As the blend composition of the long asymmetric block copolymer increased, the PS lamellar thickness increased from 15.8 to 25.1 nm, whereas the PMMA lamellar thickness remained constant at approximately 14 nm (the thickness decreased slightly from 14.0 to 13.3 nm). The domain spacing behavior in thin film was consistent in the bulk. These results were compared with the Birshtein, Zhulina, and Lyatskaya model and the theories for pure block copolymers in the strong segregation limit and in the intermediate segregation regime. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1393–1399  相似文献   

18.
Fluoroalkyl methacrylates, 2,2,2‐trifluoroethyl methacrylate ( 1 ), hexafluoroisopropyl methacrylate ( 2 ), 1,1,1,3,3,3‐hexafluoro‐2‐methyl‐2‐propyl methacrylate ( 3 ), and perfluoro t‐butyl methacrylate ( 4 ) were synthesized. Homopolymers and copolymers of these fluoroalkyl methacrylates with methyl methacrylate (MMA) were prepared and characterized. With the exception of the copolymers of MMA and 2,2,2‐trifluoroethyl methacrylate ( 1 ), the glass transition temperatures (Tgs) of the copolymers were found to deviate positively from the Gordon‐Taylor equation. The positive deviation from the Gordon‐Taylor equation could be accounted for by the dipole–dipole intrachain interaction between the methyl ester group and the fluoroalkyl ester group of the monomer units. These Tg values of the copolymers were found to fit with the Schneider equation. The fitting parameters in the Schneider equation were calculated, and R2 values, the coefficients of determination, were almost 1.0. The refractive indices of the copolymers, measured at 532, 633, and 839 nm wavelengths, were lower than that of PMMA and showed a linear relationship with monomer composition in the copolymers. 2 and MMA have a tendency to polymerize in an alternating uniform monomer composition, resulting in less light scattering. This result suggests that the copolymer prepared with an equal molar ratio of 2 and MMA may have useful properties with applications in optical devices. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4748–4755, 2008  相似文献   

19.
This is the first report concerning the use of vinyl polyperoxide, namely, poly(methyl methacrylate) peroxide (PMMAP), as a thermal initiator for the synthesis of active polymer PMMAP‐PS‐PMMAP by free‐radical polymerization with styrene. The polymerizations have been carried out at different concentrations of macroinitiator PMMAP. The active polymers have been characterized by 1H NMR, DSC, thermogravimetric analysis, and gel permeation chromatography. PMMAP‐PS‐PMMAP is further used as the thermal macroinitiator for the preparation of another block copolymer, PMMA‐b‐PS‐b‐PMMA, by reacting the active polymers with methyl methacrylate. The block copolymers have been synthesized by varying the concentrations of the active polymers. The mechanism of block copolymers has been discussed, which is also supported by thermochemical calculations. Studies on the surface texture and morphology of the block copolymer of polystyrene (PS) and PMMA material have been carried out using scanning electron microscopy. Furthermore, in this article, a blend of the same constituent materials (PS and PMMA) in proportions (v/v) similar to that contained in block copolymers has been formulated, and the morphology and surface textures of these materials were also investigated. A comparative microscopical evaluation between two processing methods was done for a better understanding of the processing route dependence of the microstructures. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 546–554, 2001  相似文献   

20.
2,3,4,5,6‐Pentafluoro and 4‐trifluoromethyl 2,3,5,6‐tetrafluoro styrenes were readily copolymerized with methyl methacrylate (MMA) by a free radical initiator. The copolymers were soluble in tetrahydrofuran and acetone. The films obtained were transparent and flexible. The glass transition temperatures (Tgs) of the copolymers were found positively deviated from the Gordon–Taylor equation. The positive deviation could be accounted for by dipole–dipole intrachain interaction between the methyl ester group of MMA and the highly fluorinated aromatic moiety, which resulted in a decrease in the segmental mobility of the polymer chains and the enhanced Tg values of the copolymers. The water absorption of PMMA was greatly decreased by copolymerization of MMA with the highly fluorinated styrenes. With as little as 10 mol % of pentafluoro styrene content in the copolymer, the water absorption was decreased to one‐third of that for pure PMMA. The fluorinated styrenes‐MMA copolymers were thermally stable up to 420 °C under air and nitrogen atmospheres. With 50 mol % of MMA in the copolymer, the copolymer was still stable up to 350 °C. Since these copolymers contain a large number of fluorine atoms, the light absorption in the region of the visible to near infrared is decreased in comparison with nonfluorinated polymers. Thus, these copolymers may be suitable for application in optical devices, such as optical fibers and waveguides. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号