首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The absorption and fluorescence emission of pyridoxamine were studied as function of pH and solvent properties. In the ground state, pyridoxamine exhibits different protonated forms in the range of pH 1.5–12. Fluorescence studies showed that the same species exist at the lowest singlet excited state but at different pH ranges. The phenol group is by ca. 8 units more acidic in the excited state than in the ground state. On the other hand, the pyridine N‐atom is slightly more basic in the lowest excited state than in the ground state. Excitation spectra and emission decays in the pH range of 8–10 indicate the protonation of the pyridine N‐atom by proton transfer from the amine group, in the ground and singlet excited states. Spectroscopic studies in different solvents showed that pyridoxamine in the ground or excited states exhibits intramolecular proton transfer from the pyridine N‐atom to the phenol group, which is more favorable in solvents of low hydrogen‐bonding capacity. The cationic form with the protonated phenolic group, which emits at shorter wavelength, is the dominant species in nonprotic solvents, but, in strong proton‐donor solvents, both forms exist. The fluorescence spectra of these species exhibit blue shift in protic solvents. These shifts are well‐correlated with the polarity and the H‐donor ability of the solvent.  相似文献   

2.
This study investigates how the various components (method, basis set, and treatment of solvent effects) of a theoretical approach influence the relative energies between keto and enol forms of acetylacetone, which is an important model system to study the solvent effects on chemical equilibria from experiment and theory. The computations show that the most popular density functional theory (DFT) approaches, such as B3LYP overestimate the stability of the enol form with respect to the keto form by ~10 kJ mol?1, whereas the very promising SCS‐MP2 approach is underestimating it. MP2 calculations indicate that in particular the basis set size is crucial. The Dunning Huzinaga double ζ basis (D95z(d,p)) used in previous studies overestimates the stability of the keto form considerably as does the popular split‐valence plus polarization (SVP) basis. Bulk properties of the solvent included by continuum approaches strongly stabilize the keto form, but they are not sufficient to reproduce the reversal in stabilities measured by low‐temperature nuclear magnetic resonance experiments in freonic solvents. Enthalpic and entropic effects further stabilize the keto form, however, the reversal is only obtained if also molecular effects are taken into account. Such molecular effects seem to influence only the energy difference between the keto and the enol forms. Trends arising due to variation in the dielectric constant of the solvent result from bulk properties of the solvent, i.e., are already nicely described by continuum approaches. As such this study delivers a deep insight into the abilities of various approaches to describe solvent effects on chemical equilibria. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

3.
Campestarenes are a new family of Schiff‐base macrocycles that form selectively in a one‐step synthesis. These macrocycles with five‐fold symmetry show solvent‐dependent tautomerization and dimerization or aggregation. In this paper, we have prepared new soluble campestarenes that do not aggregate. The initial single‐crystal X‐ray diffraction study of a campestarene reveals that these macrocycles are nearly flat. The tautomeric behavior of the campestarenes has been extensively studied by variable‐temperature, multinuclear NMR spectroscopy, UV/Vis spectroscopy, and IR spectroscopy. In polar solvents, such as DMF, the molecules exist predominantly in their keto‐enamine form, but the enol‐imine tautomer is dominant in non‐polar solvents. A detailed computational study of the tautomeric forms of campestarenes provides a theoretical basis for their behavior and corroborates the experimental data. The results of this study give the first comprehensive understanding of the electronic and spectroscopic properties of these pentagonal macrocycles.  相似文献   

4.
Keto aldoses usually form complex mixtures of equilibrating isomers in solution. This is due to the two different positions that may be used for ring closure in dicarbonyl sugars. The composition of various 2‐keto aldoses 1 – 5 and 8 , the 3‐keto aldose 2‐deoxy‐D ‐erythro‐hexos‐3‐ulose ( 9 ), and the ketose 1‐deoxy‐D ‐ribulose ( 10 ) in aqueous solution has been determined by NMR spectroscopy. The investigated keto aldoses form equilibria containing three to fifteen isomers. Among various furanose and pyranose ring structures stemming from 1,4‐, 1,5‐, 2,5‐, and 2,6‐cyclization, bicyclic forms were also found in several cases. The 2‐keto aldoses mainly exist as hydrated isomers in H2O. Therefore, these forms and their proportions were compared to forms found in two homomorphous aldoses and one homomorphous ketose as model compounds. Besides the NMR data, also the composition of the 2‐keto aldoses agreed with the average of forms found in the model compounds, a finding that might eventually be useful for deducing the composition of other keto aldoses.  相似文献   

5.
Ground state geometries of the four tautomeric forms keto‐N9H, keto‐N7H, enol‐N9H, and enol‐N7H of guanine were optimized in the gas phase at the RHF level using a mixed basis set consisting of the 4‐31G basis set for all the atoms except the nitrogen atom of the amino group for which the 6‐311+G* basis set was used. These calculations were also extended to hydrogen‐bonded complexes of three water molecules with each of the keto‐N9H (G9‐3W) and keto‐N7H (G7‐3W) forms of guanine. Relative stabilities of the four above‐mentioned tautomers of guanine as well as those of G9‐3W and G7‐3W complexes in the ground state in the gas phase were studied employing the MP2 correlation correction. In aqueous solution, relative stabilities of these systems were studied using the MP2 correlation correction and polarized continuum model (PCM) or the isodensity surface polarized continuum model (IPCM) of the self‐consistent reaction field (SCRF) theory. Geometry optimization in the gas phase at the RHF level using the 6‐31+G* basis set for all atoms and the solvation calculations in water at the MP2 level using the same basis set were also carried out for the nonplanar keto‐N9H and keto‐N7H forms of guanine. Thus, it is shown that among the different tautomers of guanine, the keto‐N7H form is most stable in the gas phase, while the keto‐N9H form is most stable in aqueous solution. It appears that both the keto‐N9H and keto‐N7H forms of guanine would be present in the ground state, particularly near the aqueous solution–air interface. Vertical excitation and excited state geometry optimization calculations were performed using configuration interaction involving single electron excitation (CIS). It is found that the absorption spectrum of guanine would arise mainly due to its keto‐N9H form but the keto‐N7H form of the same would also make some contribution to it. The enol‐N9H and enol‐N7H forms of the molecule are not expected to occur in appreciable abundance in the gas phase or aqueous media. The normal fluorescence spectrum of guanine in aqueous solution with a peak near 332 nm seems to originate from the lowest singlet excited state of the keto‐N7H form of the molecule while the fluorescence of oxygen‐rich aqueous solutions of guanine with a peak near 450 nm appears to originate from the lowest singlet excited state of the keto‐N9H form of the molecule. The origin of the slow damped spectral oscillation observed in the absorption spectrum of guanine has been explained. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 826–846, 2000  相似文献   

6.
Is the resonance‐based anionic keto form of oxyluciferin the chemical origin of multicolor bioluminescence? Can it modulate green into red luminescence? There is as yet no definitive answer from experiment or theory. The resonance‐based anionic keto forms of oxyluciferin have been proposed as a cause of multicolor bioluminescence in the firefly. We model the possible structures by adding sodium or ammonium cations and investigating the ground‐ and excited‐state geometries as well as the electronic absorption and emission spectra. A role for the resonance structures is obvious in the gas phase. The absorption and emission spectra of the two structures are quite different—one in the blue and another in the red. The differences in the spectra of the models are small in aqueous solution, with all the absorption and emission spectra in the yellow–green region. The resonance‐based anionic keto form of oxyluciferin may be one origin of the red‐shifted luminescence but is not the exclusive explanation for the variation from green (≈530 nm) to red (≈635 nm). We study the geometries, absorption, and emission spectra of the possible protonated compounds of keto(?1) in the excited states. A new emitter keto(?1)′‐H is considered.  相似文献   

7.
王艳  冯文林 《结构化学》1994,13(6):457-462
利用半经验AM1方法计算了基态与第一激发态7-羟基喹啉的两种异构体及其与甲醇等溶济分子形成1:2桥式氢键化合物的结构与稳定性。在基态,烯醇式结构比酮式结构稳定;而在第一激发态酮式比烯醇式稳定。1:2桥式氢键的形成使得酮式能量降低比烯醇式多。烯醇式1:2桥式氢键化合物呈交叉式结构,酮式1:2桥式氢键化合物呈折叠式结构,激发态的形成对氢键结构影响不大。在7-羟基喹啉羟基(或羰基)的邻位和间位引入取代基后,对喹啉环和桥式氢键结构的影响均不明显。  相似文献   

8.
All-electron ab initio Hartree–Fock (RHF ) calculations have been carried out to investigate the keto/enol equilibrium of phloroglucinol. The calculations predict that the enol form of phloroglucinol, 1,3,5-benzenetriol, is by far the most stable of the two. This is confirmed by NMR spectra taken on phloroglucinol. A comparison of the keto enol form transformation of phloroglucinol with that of the phenol system shows that the keto form of phloroglucinol, 1,3,5-cyclohexanetrion, is more abundant in the phloroglucinol system, and the keto form of phenol, 2,4-cyclohexadien-1-on, in the phenol system. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
利用半经验AM1方法计算了基态与第一激发态7-羟基喹啉的两种异构体及其与甲醇等溶济分子形成1:2桥式氢键化合物的结构与稳定性。在基态,烯醇式结构比酮式结构稳定;而在第一激发态酮式比烯醇式稳定。1:2桥式氢键的形成使得酮式能量降低比烯醇式多。烯醇式1:2桥式氢键化合物呈交叉式结构,酮式1:2桥式氢键化合物呈折叠式结构,激发态的形成对氢键结构影响不大。在7-羟基喹啉羟基(或羰基)的邻位和间位引入取代基后,对喹啉环和桥式氢键结构的影响均不明显。  相似文献   

10.
The relative stability of 1,4‐benzodiazepin‐2‐one tautomers in the gas phase and model solvents was calculated at the M06 and ωB97XD levels of theory. The two density functionals were benchmarked earlier and demonstrated as excellent models to study tautomerism in a vast array of chemical systems. A number of commercially available 1,4‐benzodiazepin‐2‐ones were investigated computationally for the first time. In addition, some biologically active and newly devised benzodiazepines were considered, which may be important in designing structures with desired (bio)chemical features. Special attention was paid to determine substituent effects on the Gibbs free energies of keto, enol, and iminol forms for each respective benzodiazepine. It was demonstrated that (i) the replacement of the benzene ring by the heterocyclic ring in the benzodiazepine system may stabilize the iminol tautomer, and (ii) the electron‐withdrawing substituent at the C3‐position of the respective benzodiazepine may stabilize the enol tautomer relative to the parent keto form. It is concluded that substituent effects may govern the chemical reactivity and biological properties of selected benzodiazepines.  相似文献   

11.
The first singlet excited state geometries of various isomers and tautomers of firefly oxyluciferin (OxyLH2), as well as their fluorescence spectra in aqueous solution, were studied using time dependent density functional theory (TDDFT). With changing pH in aqueous solution, three fluorescence peaks, blue (450 nm), yellow-green(560 nm), and red (620 nm) correspond to neutral keto and enolic forms, the monoanionic enolic form,and the monocationic keto form respectively. A counterion, Na+, was predicted to cause a blue shift in the fluorescence of anionic OxyLH2. The contributions of a charge transfer (CT) state upon electronic excitation of the planar and twisted structures were predicted. CT was large for the twisted structures but small for the planar ones. The differences between pK and pK* of various oxyluciferin species were predicted using a Forster cycle. A new possible light emitter, namely, the monocation keto form (keto+1), was considered.  相似文献   

12.
The photochromic mechanism of 1-phenyl-3-methyl-4-(6-hydro-4-amino-5-sulfo-2,3- pyrazine)-pyrazole-5-one has been investigated using the density functional theory(DFT). The solvent effect is simulated using the polarizable continuum model(PCM) of the self-consistent reaction field theory. According to the crystal structure of the title compound, an intramolecular proton transfer mechanism from enol to keto form was proposed to interpret its photochromism. Bader's atom-in-molecule(AIM) theory is used to investigate the nature of hydrogen bonds and ring structures. Time-dependent density functional theory(TDDFT) calculation results show that the photochromic process from enol to keto form is reasonable. The conformation and molecular orbital analysis of enol and keto forms explain why only intramolecular proton transfer is possible. The results from analyzing the energy and dipole moments of enol form, transition state and keto form in the gas phase and in different solvents have been used to assess the stability of the title compound.  相似文献   

13.
《化学:亚洲杂志》2017,12(16):2121-2126
Two novel diazadioxaacene derivatives ( ADOP and ADOQ ) have been successfully synthesized and characterized. Their single crystal analyses disclose that molecule ADOP forms a twisted topology configuration, whereas ADOQ adopts reclining‐chair architecture. Both of them emit strong blue fluorescence in organic solvents. Moreover, they can self‐assemble to form regular nanobelts and nanowires, respectively, via a simple surfactant‐assisted method.  相似文献   

14.
Five new polymorphs and one hydrated form of 2‐thiobarbituric acid have been isolated and characterised by solid‐state methods. In both the crystalline form II and in the hydrate form, the 2‐thiobarbituric molecules are present in the enol form, whereas only the keto isomer is present in crystalline forms I (reported in 1967 by Calas and Martinex), III , V and VI . In form IV , on the other hand, a 50:50 ordered mixture of enol/keto molecules is present. All new forms have been characterised by single‐crystal X‐ray diffraction, 1D and 2D (1H, 13C, and 15N) solid‐state NMR spectroscopy, Raman spectroscopy and X‐ray powder diffraction at variable temperature. It has been possible to induce keto–enol conversion between the forms by mechanical methods. The role of hydrogen‐bond interactions in determining the relative stability of the polymorphs and as a driving force in the conversions has been ascertained. To the best of the authors’ knowledge, the 2‐thiobarbituric family of crystal forms represents the richest collection of examples of tautomeric polymorphism so far reported in the literature.  相似文献   

15.
Although recent years have seen much progress in the elucidation of the mechanisms underlying the bioluminescence of fireflies, there is to date no consensus on the precise contributions to the light emission from the different possible forms of the chemiexcited oxyluciferin (OxyLH2) cofactor. Here, this problem is investigated by the calculation of excited‐state equilibrium constants in aqueous solution for keto–enol and acid–base reactions connecting six neutral, monoanionic and dianionic forms of OxyLH2. Particularly, rather than relying on the standard Förster equation and the associated assumption that entropic effects are negligible, these equilibrium constants are for the first time calculated in terms of excited‐state free energies of a Born–Haber cycle. Performing quantum chemical calculations with density functional theory methods and using a hybrid cluster‐continuum approach to describe solvent effects, a suitable protocol for the modeling is first defined from benchmark calculations on phenol. Applying this protocol to the various OxyLH2 species and verifying that available experimental data (absorption shifts and ground‐state equilibrium constants) are accurately reproduced, it is then found that the phenolate‐keto‐OxyLH monoanion is intrinsically the preferred form of OxyLH2 in the excited state, which suggests a potential key role for this species in the bioluminescence of fireflies. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
Quantum chemical calculations were used to study the production of ethylene and keto/enol tautomers from ethoxyquinoline (2‐EQ) and ethoxyisoquinoline (1‐EisoQ and 3‐EisoQ) in the gas phase and ethanol at the MP2/6‐311++G(2d,2p)//BMK/6‐31+G(d,p) level. The obtained data indicate that the elimination of ethylene from 1‐EisoQ and 2‐EQ is slightly more favorable than from 3‐EisoQ. Formation of quinolone and isoquinolone (2‐EQO, 1‐EisoQO, and 3‐EisoQO) is kinetically favored compared to their enols. Decomposition of 2‐EQ and 1‐EisoQ to ethylene and keto forms is thermodynamically and kinetically preferable more stable than the corresponding enols. However, the hydroxy form of 3‐EisoQ is more stable than its keto tautomer in the gas phase and ethanol. The enol tautomers cost less energy when formed from their keto forms rather than from the parent ethoxyquinolone and ethoxyisoquinoline.  相似文献   

17.
A series of new AB type azobenzene monomers based on various substituted phenols and higher order fused/extended aromatic rings were synthesized and their hyperpolarizability tensor β determined by hyper‐Rayleigh scattering (HRS) measurement in methanol. The electron donor (? OH) and acceptor units (? COOH) were kept constant in the series, but the effective conjugation length was varied by varying the number and position of substituents as well as the number of aromatic rings. The effect of substitution of the phenolic ring on the β value was investigated and it was found to range from 15 × 10?30 to 42 × 10?30 esu. The effect of intramolecular hydrogen bonding on the nonlinear optical (NLO) property was also examined. The nonlinearity was in the following order of phenol derivative: α‐naphthol > phenyl phenol > 2,6‐dimethyl phenol > o‐cresol > cardanol > phenol > β‐naphthol. The unusually low values for the β‐naphthol‐based chromophore compared with its isomer (α‐naphthol) could be rationalized based on hydrogen bonding of the o‐hydroxyl group with the β nitrogen of the azo bridge. These azobenzene NLO chromophoric monomers were polymerized to form main‐chain polymers with a head to tail structure. The polymers had high thermal stability and rather low solubility in common organic solvents. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4455–4468, 2005  相似文献   

18.
Ethyl esters of 2,4-dibromo-2-R1-4-R2-3-oxopentanoic and -hexanoic acids react with zinc and aliphatic or aromatic aldehydes under the conditions of the Reformatskii reaction to give 3-R1-5,5-R2, R2-6-R3-2,3,5,6-tetrahydropyran-2,4-diones, which are obtained in three forms: keto, enol with enolization of the keto group, and enol with enolization of the ester group. The keto form is isolated by crystallization from a mixture of CCl4 and petroleum ether; the first enol form, from MeOH, EtOH, and polar aprotic solvents; and the second enol form, from CHCl3. The second enol form is oxidized in DMSO to form a keto compound containing a hydroxy group at the 3-position of the heteroring.  相似文献   

19.
In this study, a novel 1,3,4-thiadiazole derivative containing 3-mercaptobutan-2-one and quinazolin-4-one moieties (Compound 3) is synthesized by the coupling of 2-amino-1,3,4-thiadiazole-5-(3-mercaptobutan-2-one) (Compound 1) with 2-Phenyl-4H-3,1-benzoxazin-4-one (Compound 2) in one molecule moiety. Compound 3 is found to exist as two types of intra-molecular hydrogen bonding with keto-enol tautomerism characters, which is further confirmed using FTIR, 1H-NMR, 13C-NMR, mass spectrometer, and UV-Visible spectra. The 1H-NMR and UV-Visible spectra of Compound 3 are investigated in different solvents such as methanol, chloroform, and DMSO. Compound 3 exhibits keto-enol tautomeric forms in solvents with different percentage ratios depending on the solvent polarity. The 1H-NMR and UV-Visible spectral results show that Compound 3 favors the keto over the enol form in polar aprotic solvents such as DMSO and the enol over the keto form in non-polar solvents such as chloroform. The 13C-NMR spectrum gives two singles at δ 204.5 ppm, due to ketonic carbon, and δ 155.5 ppm, due to enolic carbon, confirming the keto-enol tautomerism of Compound 3. Furthermore, the molecular ion at m/z 43 and m/z 407 in the mass spectrum of Compound 3 and fragmentation mechanisms proposed reveal the existence of the keto and enol forms, respectively.  相似文献   

20.
《合成通讯》2013,43(14):2691-2695
Abstract

Convenient and simple synthesis of β‐keto benzylsulfones, isothiochromanone‐2,2‐dioxides was carried out by dehydrating condensation of benzylsulfonyl acetic acids using phosphorous pentoxide in aromatic solvents benzene and halobenzenes. Depending on the solvents, the products formed were predominantly either β‐keto benzylsulfones or isothiochromanone‐2,2‐dioxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号