首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article highlights the history, synthetic routes, material properties, and scope of ethylene/vinyl acetate copolymer (EVA)/clay nanocomposites. These nanocomposites of EVAs are achieved with either unmodified or organomodified layered silicates with different methods. The structures of the resulting polymer/inorganic nanocomposites have been characterized with X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy. The addition of a small amount of clay, typically less than 8 wt %, to the polymer matrix unusually promotes the material properties, such as the mechanical, thermal, and swelling properties, and increases the flame retardancy of these hybrids. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 471–480, 2006  相似文献   

2.
A series of biodegradable, thermoplastic polyurethane elastomers poly(?‐caprolactone‐co‐lactide(polyurethane [PCLA–PU] were synthesized from a random copolymer of L ‐lactide (LA) and ?‐caprolactone (CL), hexamethylene diisocyanate, and 1,4‐butanediol. The effects of the LA/CL monomer ratio and hard‐segment content on the thermal and mechanical properties of PCLA–PUs were investigated. Gel permeation chromatography, IR, 13C NMR, and X‐ray diffraction were used to confirm the formation and structure of PCLA–PUs. Through differential scanning calorimetry, tensile testing, and tensile‐recovery testing, their thermal and mechanical properties were characterized. Their glass‐transition temperatures were below ?8 °C, and their soft domains became amorphous as the LA content increased. They displayed excellent mechanical properties, such as a tensile strength as high as 38 MPa, a tensile modulus as low as 10 MPa, and an elongation at break of 1300%. Therefore, they could find applications in biomedical fields, such as soft‐tissue engineering and artificial skin. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5505–5512, 2006  相似文献   

3.
Thermally stable organically modified clays based on 1,3‐didecyl‐2‐methylimidazolium (IM2C10) and 1‐hexadecyl‐2,3‐dimethyl‐imidazolium (IMC16) were used to prepare poly(ethylene naphthalate) (PEN)/clay nanocomposites via a melt intercalation process. The clay dispersion in the resulting hybrids was studied by a combination of X‐ray diffraction, polarizing optical microscopy, and transmission electron microscopy. It was found that IMC16 provided better compatibility between the PEN matrix and the clay than IM2C10, as evidenced by some intercalation of polymer achieved in the PEN/IMC16‐MMT hybrid. The effects of clay on the crystal structure of PEN were investigated. It was found that both pristine MMT and imidazolium‐treated MMT enhanced the formation of the β‐crystal phase under melt crystallization at 200 °C. At 180 °C, however, the imidazolium‐treated MMT was found to favor the α‐crystal form instead. The difference in clay‐induced polymorphism behavior was attributed to conformational changes experienced by the clay modifiers as the crystallization temperature changes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1040–1049, 2006  相似文献   

4.
The preparation and characterization of melt‐intercalated poly(vinylidene fluoride) (PVDF)/clay nanocomposites are reported. Organophilic clay (clay treated with dimethyl dihydrogenated tallow quaternary ammonium chloride) was used for the nanocomposite preparation. The composites were characterized with X‐ray diffraction (XRD), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). XRD results indicated the intercalation of the polymer in the interlayer spacing. The incorporation of clay in PVDF resulted in the β form of PVDF. DSC nonisothermal curves showed an increase in the melting and crystallization temperatures along with a decrease in crystallinity. Isothermal crystallization studies show an enhanced rate of crystallization with the addition of clay. DMA indicated significant improvements in the storage modulus over a temperature range of ?100 to 150 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 31–38, 2003  相似文献   

5.
A synthetic saponite-like clay, Sumecton SA (SSA), was self-assembled with 12-phosphotungstic acid (PTA) heteropolyacid for the preparation of new hybrid nanocomposites for proton exchange membranes. Thermogravimetric analysis (TGA) and Fourier transformed diffuse reflectance spectroscopy (DRIFT) measurements indicate the formation of robust PTA-SSA complexes. The Keggin structure of PTA is preserved within the complexes and is thermally stable up to 450 °C. The amount of PTA incorporated into the clay depends on the PTA-SSA weight ratio used for the complex preparation. PTA incorporation achieved is approximately 2-3 times the PTA content of most reported literature. However, higher PTA incorporation is accompanied by a significant loss of structural clay integrity. Low PTA-SSA weight ratios tend to preserve clay structure, but do not preclude its general amorphization generated by the PTA acidic treatment. PTA-SSA complexes present a low degree of order. Inorganic complexes were blended by melt extrusion with chemically-modified styrene/ethylene-co-butylene/styrene block copolymer (SEBS). Poly(oxyethylene/oxypropylene)-grafted-SEBS is more efficient than maleic anhydride-grafted-SEBS at dispersing PTA-SSA complexes. For both nanocomposite systems, nanoparticles’ size varies between 30 and 300 nm.  相似文献   

6.
Jute fiber (Corchorus capsularis, JRC‐321 variety), an environmentally and ecologically friendly product, was chemically modified by the cooking alkaline sulfite process to unbleached and bleached pulps, which were further modified via graft copolymerization with acrylamide monomer with a complex initiating system: CuSO4/glycine/KHSO5. The above samples were characterized and morphologically analyzed by IR, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy, and X‐ray diffraction. The biodegradability and superabsorbency of the samples were also evaluated for their novel commercial importance as jute‐based superabsorbents. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2696–2703, 2003  相似文献   

7.
The preparation, characterization, and properties of the new thermoplastic vulcanizate (TPV)/organoclay nanocomposites are reported in this article. The nanocomposites were prepared by the melt intercalation method. The organoclay was first treated with glycidyl methacrylate, which acts as a swelling agent for organoclays, as well as a grafting agent for TPV (in the presence of dicumyl peroxide) during the melt mixing. The nanocomposite was intercalated, as evidenced by X‐ray diffraction. The tensile modulus of the 5% TPV/organoclay nanocomposite was higher than that of the 20% talc‐filled microcomposite. The storage modulus of the nanocomposite was higher than that of the pristine TPV. The most important observation is obtained from dynamic mechanical analysis, which reveals that the glass‐transition temperature of the polypropylene phase of the nanocomposite increases (as compared to virgin TPV), whereas the ethylene–propylene–diene monomer phase remains almost the same. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2900–2908, 2004  相似文献   

8.

Ternary miscible blends based on various ratios of poly(vinyl alcohol) (PVA), poly(acrylamide) (PAM) and carboxymethyl cellulose (CMC) were prepared by solution casting in the form of thin films. The structure‐property behavior of the ternary PVA/PAM/CMC blends, before and after they had been exposed to various doses of electron beam irradiation, was investigated by FT‐IR spectroscopy, SEM, XRD and stress‐strain curves. The visual observation showed that the cast films of the individual polymers PVA, PAM, and CMC and their blends over a wide range of composition are clear and transparent indicating the miscibility of PVA/PAM/CMC ternary blends. The FT‐IR analysis of pure polymers or their ternary blends before or after electron beam irradiation proved the formation of hydrogen bonding. In addition, it was found that the intensity of the different absorption bands depends on the ratio of PAM and CMC in the ternary blend. The XRD patterns showed that the peak position for the ternary blends decreases with increasing the ratio of CMC in the blend. However, the peak position for the ternary blend based on equal ratios of pure polymers was not affected by blending and was found in the same position as in the XRD pattern of pure PVA. The SEM micrographs give support to the visual observation indicating the complete miscibility of PVA/PAM/CMC ternary blends. The improvement in morphology leads to improvement in the tensile mechanical properties of the ternary polymer blends.  相似文献   

9.
A series of fluorinated thermoplastic polyurethane elastomers (FTPU) based on self-synthesized fluorinate polyether diol (PFGE) were prepared by two-step polymerization. For the purpose of improving the molecular weight and mechanical property of FTPU, polybutylene adipate (PBA) was used to be compounded with PFGE as the soft-segment of FTPU. Effects of the mass ratio of PFGE/PBA and the mass fraction of hard-segment on the mechanical property of FTPU were investigated. The structure and morphology of FTPU were characterized by FTIR, GPC, DMA, surface tension and AFM analysis.  相似文献   

10.
The formation of clay intercalates with three different kinds of organic ammonium salts, when mixed in the presence of synthetic or natural polyisoprene rubber, has been investigated. X‐ray diffraction and transmission electron microscopy (TEM) experiments have shown that intercalates with organic bilayers, rather than with interdigitated organic monolayers, are obtained only for the ammonium salts presenting two long alkyl chains and only in the presence of the natural rubber (NR). These results have been qualitatively rationalized on the basis of suitable interlayer densities. Both monolayer and bilayer clay intercalates remain stable for short‐term heating procedures at temperatures lower than 250°C. For treatments at higher temperatures, where the decomposition of the organic ammonium salt occurs, both kinds of clay intercalates maintain intralayer crystalline order. However, the decomposition of the organic modifier leads to the formation of pristine and exfoliated clay for the intercalates with organic monolayers and bilayers, respectively. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Pain is a prevalent condition that can have a serious impact upon the socioeconomic function of a population. Numerous methods exist to administer analgesic medication (e.g. aspirin) to the body however inherent drawbacks limit patient acceptability. The inhaled route offers promise to facilitate the administration of medication to the body. Here, we consider the crystallisation behaviour of aspirin, our model therapeutic agent, when in contact with material of relevance to the lung. Thus, our approach aims to better understand the interaction between drug substances and the respiratory tract. Langmuir monolayers composed of a mixed surfactant system were supported on an aqueous subphase containing aspirin (7.5 mg/ml). The surfactant film was compressed to either 5mN/m (i.e. inhalation end point) or 50 mN/m (i.e. exhalation end point), whilst located within a humid environment for 16 h. Standard cooling crystallisation procedures were employed to produce control samples. Antisolvent crystallisation in the presence or absence of lung‐specific additives was conducted. All samples were analysed via scanning electron microscopy and X‐ray diffraction. Drug‐surfactant interactions were confirmed via condensed Langmuir isotherms. Scanning electron microscopy analysis revealed plate‐like morphology. The crystallisation route dictated both the crystal habit and particle size distribution. Dominant reflections were the (100) and (200) aspects. The main modes of interaction were hydrogen bonding, hydrophobic associations, and van der Waals forces. Here, we have demonstrated the potential of antisolvent crystallisation with lung‐specific additives to achieve control over drug crystal morphology. The approach taken can be applied in respirable formulation engineering. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
X‐ray powder diffraction in reflection (Bragg–Brentano parafocusing geometry) is extensively used to characterize the structure of polymer/layered silicate nanocomposites (PLSNs). The large basal spacings (d001 > 2.0 nm) necessitates the collection of data at scattering angles (2θ) of less than 10°. The calculation of an ideal scattering profile for PLSNs provides an avenue to ascertain the influence of experimental parameters and the arrangement, organization, concentration, and composition of constituents on the experimentally observed pattern. This enables better experimental technique, more complete utilization of the scattering data, insight into inconsistencies between scattering and microscopy, and minimization of incorrect interpretation or overinterpretation of data. Because of the strong θ dependence of theoretical and experimental factors at low values of 2θ, careful sample preparation and data evaluation are necessary and should be complemented by microscopic observations, especially for PLSNs with low volume fractions of organically‐modified layered silicates (OLS) that are suspected of having exfoliated morphologies. X‐ray powder diffraction in reflection alone is insufficient to completely characterize and ascribe PLSN morphology. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1590–1600, 2002  相似文献   

13.
刘勇军 《燃料化学学报》2012,40(9):1086-1091
采用元素分析、扫描电镜和透射电镜等分析方法对渣油原料中的沥青质、加氢处理后的沥青质及添加高芳香性轻循环油(LCO)反应后的沥青质进行对比研究。结果发现,渣油加氢处理前后沥青质的表面呈现出光滑表面和多孔的球形颗粒表面两种完全不同的形貌。渣油加氢前后沥青质的芳核堆砌表现出明显的长程无序局部有序的特征;加氢处理后的沥青质芳核片层易于堆砌,出现了多层堆砌、长程有序的类石墨结构。渣油中高芳香性LCO的添加有利于促进沥青质的加氢反应、改善沥青质芳核系统在渣油加氢处理过程中的聚集行为。  相似文献   

14.
In the present work the oxidation behavior of ageing treated steel was examined up to 1000°C in different environments (O2 and CO2) and with different heating rates. The examination was conducted by means of thermogravimetric analysis, scanning electron microscopy and X-ray diffraction. In this study it was deduced that in the case of O2 an oxide scale is formed on top of the steel. The oxidation is uniform and the growth of the scale is more intent at low heating rate. It consist of different Fe, Mn, Mo and Cr oxides which are adjusted in the form of layers. This phenomenon was explained by the different diffusion coefficients of each metal in the already formed scale. Regarding the oxidation in CO2, the scale formation takes place at a lower temperature than in the case of O2. Hence the examined substrate is more vulnerable in CO2.  相似文献   

15.
A vermiculite (VMT) dispersion in water was blended with aqueous poly(vinyl alcohol) (PVA). The properties of the PVA–VMT nanocomposites greatly depended on the preparation procedure because of the chemical reactions and physical interactions involved. The samples were prepared in two steps to investigate the properties of the PVA–VMT nanocomposites. The VMT was first pretreated and delaminated with hydrochloric acid. The delaminated VMT was then added to the PVA solution with various mixing times. The structure and properties of the films were investigated. From X‐ray diffraction and transmission electron microscopy, the VMT layers were found to be well dispersed individually in the PVA–VMT blends. The effect of the VMT content on the thermal behavior of the PVA–VMT blends was also studied with differential scanning calorimetry. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 749–755, 2003  相似文献   

16.
In the synthesis of InPO4 crystals, using F127 [(EO)106(PO)70(EO)106] as a structure‐directing template, a morphology tunable progress was observed during the crystal evolution. By verifying the initial pH from 1.0 to 12.0, the morphology is evolved from single crystal, through sub‐micro crystallites, and finally to crystalline nanoparticles. The most influential factors in the morphology evolution are the initial pH level, the participation of surfactant‐template F127, and the change in pH during the reaction.  相似文献   

17.
18.
A facile method using headspace thin-film microextraction (HS-TFME) coupled with surface enhanced Raman spectrometry (SERS) has been developed for the determination of sulfite in traditional Chinese herbal medicine. The extraction substrate was synthesized by depositing urchin-like ZnO micron particles on glass sheets using chemical liquid phase deposition. Under the optimal conditions, the intensity of the SERS signal at 630–640?cm?1 provided a good linear relationship with the concentration of sulfite from 25 to 400?mg/kg, and the linear correlation coefficient (R) was 0.996 with a detection limit of 6?mg/kg. The method was employed for the determination of sulfite in herbal medicines, and the results were confirmed by a traditional distillation-titration method. Therefore, this developed HS-TFME-SERS method may play an important role in the rapid, simple, and selective determination of sulfite residues in Chinese herbal medicine and become a potentially universal method for this analyte in various solid samples.  相似文献   

19.
In situ synthesis of poly(methyl methacrylate) (PMMA) and polystyrene (PS) nanocomposites by free radical polymerization using intercalated chain transfer agent (I-CTA) in the layers of montmorillonite (MMT) clay is reported. MMT clay was ion-exchanged with diethyl octyl ammonium ethylmercaptan bromide, which acts both as suitable intercalant and as chain transfer agent. These modified clays were then dispersed in methyl methacrylate (MMA) or styrene (St) monomers in different loading degrees to carry out the in situ free radical polymerization. The intercalation ability of the chain transfer agent and exfoliated nanocomposite structure were evidenced by both X-ray diffraction spectroscopy (XRD) and transmission electron microscopy (TEM). Thermal properties and morphologies of the resultant nanocomposites were also studied.  相似文献   

20.
X‐ray diffraction and differential scanning calorimeter (DSC) methods have been used to investigate the crystallization behavior and crystalline structure of hexamethylenediamine (HMDA)‐modified maleic‐anhydride‐grafted polypropylene/clay (PP‐g‐MA/clay) nanocomposites. These nanocomposites have been prepared by using HMDA to graft the PP‐g‐MA (designated as PP‐g‐HMA) and then mixing the PP‐g‐HMA polymer in hot xylene solution, with the organically modified montmorillonite. Both X‐ray diffraction data and transmission electron microscopy images of PP‐g‐HMA/clay nanocomposites indicate that most of the swellable silicate layers are exfoliated and randomly dispersed into PP‐g‐HMA matrix. DSC isothermal results revealed that introducing 5 wt % of clay into the PP‐g‐HMA structure causes strongly heterogeneous nucleation, which induced a change of the crystal growth process from a three‐dimensional crystal growth to a two‐dimensional spherulitic growth. Mechanical properties of PP‐g‐HMA/clay nanocomposites performed by dynamic mechanical analysis show significant improvements in the storage modulus when compared to neat PP‐g‐HMA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3242–3254, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号