共查询到20条相似文献,搜索用时 0 毫秒
1.
A. S. Brar Kaushik Dutta S. K. Hekmatyar 《Journal of polymer science. Part A, Polymer chemistry》1998,36(7):1081-1092
The acrylonitrile/methyl methacrylate copolymers of different monomer concentration were prepared by photo polymerization using uranyl ion as initiator. The carbon 13 and proton spectra of these copolymers are overlapping and complex. The complete spectral assignment of the 13C- and 1H-NMR spectra were done with the help of Distortionless Enhancement by Polarization Transfer (DEPT) and two dimensional 13C–1H Heteronuclear Single Quantum Correlation (HSQC) experiments. The methylene, methine and the methyl carbon resonances show both stereochemical (triad level) and compositional (dyad, triad, tetrad, pentad and hexad level) sensitivity. 2D Double Quantum Filtered Correlated Spectroscopy (DQFCOSY) experiment was used to ascertain the various geminal couplings between the methylene protons. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1081–1092, 1998 相似文献
2.
A comb-like copolymer consisting of a poly(vinylidene fluoride-co-chlorotrifluoroethylene) backbone and poly(hydroxy ethyl acrylate) side chains, i.e. P(VDF-co-CTFE)-g-PHEA, was synthesized through atom transfer radical polymerization (ATRP) using CTFE units as a macroinitiator. Successful synthesis and a microphase-separated structure of the copolymer were confirmed by proton nuclear magnetic resonance (1H NMR), FT-IR spectroscopy, and transmission electron microscopy (TEM). This comb-like polymer was crosslinked with 4,5-imidazole dicarboxylic acid (IDA) via the esterification of the –OH groups of PHEA and the –COOH groups of IDA. Upon doping with phosphoric acid (H3PO4) to form imidazole–H3PO4 complexes, the proton conductivity of the membranes continuously increased with increasing H3PO4 content. A maximum proton conductivity of 0.015 S/cm was achieved at 120 °C under anhydrous conditions. In addition, these P(VDF-co-CTFE)-g-PHEA/IDA/H3PO4 membranes exhibited good mechanical properties (765 MPa of Young's modulus), and high thermal stability up to 250 °C, as determined by a universal testing machine (UTM) and thermal gravimetric analysis (TGA), respectively. 相似文献
3.
Chul-Hwan Kim Hee-Tak Kim Jung-Ki Park Sung-In Moon Moon-Su Yoon 《Journal of Polymer Science.Polymer Physics》1996,34(16):2709-2714
Ionic conductivities of the polymer electrolytes prepared from the ionomer (poly(methyl methacrylate-co-alkali metal methacrylate)), lithium perchlorate, and ethylene carbonate as a plasticizer, were studied as a function of the ion content and the alkali-metal cation of the ionomer. It was possible to obtain tough films with room-temperature ionic conductivities of ∼ 10-3 S/cm. The maximum ion conductivities of the polymer electrolytes were obtained at the ion content of 5 mol % for both Li and Na ionomer. The effects of the ion content of the ionomer on the ionic conductivities of the polymer electrolytes were mainly interpreted in terms of the characteristics of the ion aggregate formed in the polymer electrolytes. The thermal dependence of the ionic conductivity was shown to be a non-VTF pattern in some of the polymer electrolytes investigated, which is expected to be due to the presence of the ion aggregate. © John Wiley & Sons, Inc. 相似文献
4.
Julien Nicolas Ségolène Brusseau Bernadette Charleux 《Journal of polymer science. Part A, Polymer chemistry》2010,48(1):34-47
Nitroxide‐mediated controlled/living free‐radical polymerization of methyl methacrylate initiated by the SG1‐based alkoxyamine BlocBuilder was successfully performed in bulk at 80–99 °C with the help of a very small amount of acrylonitrile (AN, 2.2–8.8 mol %) as a comonomer. Well‐defined PMMA‐rich P(MMA‐co‐AN) copolymers were prepared with the number‐average molar mass, Mn, in the 6.1–32 kg mol?1 range and polydispersity indexes as low as 1.24. Incorporation of AN in the copolymers was demonstrated by 1H and 13C NMR spectroscopy, and its effect on the chain thermal properties was evaluated by DSC and TGA analyses. Investigation of chain‐end functionalization by an alkoxyamine group was performed by means of 31P NMR spectroscopy and chain extensions from a P(MMA‐co‐AN)‐SG1 macroinitiator. It demonstrated the very high proportion of SG1‐terminated polymer chains, which opened the door to block copolymer synthesis with a high quality of control. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 34–47, 2010 相似文献
5.
用两步法合成了离子液体1-烯丙基-3-甲基咪唑四氟硼酸盐([AMIM]BF4),将聚甲基丙烯酸甲酯(PMMA)引入离子液体[AMIM]BF4中,制备出含离子液体[AMIM]BF4的新型凝胶聚合物电解质,采用非质子溶剂、纳米SiO2等对其进行了改性。 用FT-IR、交流阻抗(AC)、TG、SEM等测试技术对其结构和性能进行了表征。 结果表明,非质子溶剂碳酸丙烯酯、碳酸二甲酯和纳米SiO2的加入使聚合物电解质的室温离子电导率增大,达5.25×10-3 S/cm;电导率与温度的关系符合Arrhenius方程;几种凝胶聚合物电解质的热分解温度均高于300 ℃,显示出良好的热稳定性。 相似文献
6.
《Macromolecular rapid communications》2017,38(8)
A random copolymer of ethylene oxide with CO2, namely, poly(ethylene carbonate/ethylene oxide) (P(EC/EO)), has been synthesized as a novel candidate for polymer electrolytes. Electrolyte composed of P(EC/EO) and lithium bis(fluorosulfonyl)imide has an ionic conductivity of 0.48 mS cm−1 and a Li transference number (t +) of 0.66 at 60 °C. To study ion‐conductive behavior of P(EC/EO)‐based electrolytes, the Fourier transform infrared (FT‐IR) technique is used to analyze the interactions between Li+ and functional groups of the copolymer. The carbonate groups may interact preferentially with Li+ rather than the ether groups in P(EC/EO). This study suggests that copolymerization of carbonate and flexible ether units can realize both high conductivity and t + for polymer electrolytes. High‐performance P(EC/EO) electrolyte is expected to be a candidate material for use in all‐solid‐state batteries.
7.
Chih‐Hao Tsao Mitsuru Ueda Ping‐Lin Kuo 《Journal of polymer science. Part A, Polymer chemistry》2016,54(3):352-358
A new method to prepare the polymer electrolytes for lithium‐ion batteries is proposed. The polymer electrolytes were prepared by reacting poly(phosphazene)s (MEEPP) having 2‐(2‐methoxyethoxy)ethoxy and 2‐(phenoxy)ethoxy units with 2,4,6‐tris[bis(methoxymethyl)amino]‐1,3,5‐triazine (CYMEL) as a cross‐linking agent. This method is simple and reliable for controlling the cross‐linking extent, thereby providing a straightforward way to produce a flexible polymer electrolyte membrane. The 6 mol % cross‐linked polymer electrolyte (ethylene oxide unit (EO)/Li = 24:1) exhibited a maximum ionic conductivity of 5.36 × 10?5 S cm?1 at 100 °C. The 7Li linewidths of solid‐state static NMR showed that the ionic conductivity was strongly related to polymer segment motion. Moreover, the electrochemical stability of the MEEPP polymer electrolytes increased with an increasing extent of cross‐linking, the highest oxidation voltage of which reached as high as 7.0 V. Moreover, phenoxy‐containing polyphosphazenes are very useful model polymers to study the relationship between the polymer flexibility; that is, the cross‐linking extent and the mobility of metal ions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 352–358 相似文献
8.
Monika Osińska Mariusz Walkowiak Aldona Zalewska Teofil Jesionowski 《Journal of membrane science》2009
The presented contribution aims at reconsidering the role of filler in affecting the ionic transport in composite gel electrolytes for Li-ion cells based on microporous polymer membranes. The gels have been prepared by swelling thin PVdF/HFP membranes either with conventional liquid electrolyte or with pure propylene carbonate solvent. The membranes contained dispersed submicron-size modified silica filler added in a wide range of weight ratios. The effect of filler content on the kinetics of liquid phase absorption and evaporation from the composite membranes, as well as on the conductivity of the corresponding gel electrolytes, has been studied and discussed in terms of the “colloidal” and “soggy sand” electrolyte concepts. It has been found that conductivity increase of composite gels is not directly correlated with the liquid electrolyte uptake. On this basis it is concluded that important part of ionic transport in this type of composite gel polymer electrolytes is realized on the filler grain boundaries, through overlapping space charge layers of the silica grains. 相似文献
9.
The direct preparation of proton conducting poly(vinyl chloride) (PVC) graft copolymer electrolyte membranes using atom transfer radical polymerization (ATRP) is demonstrated. Here, direct initiation of the secondary chlorines of PVC facilitates grafting of a sulfonated monomer. A series of proton conducting graft copolymer electrolyte membranes, i.e. poly(vinyl chloride)‐g‐poly(styrene sulfonic acid) (PVC‐g‐PSSA) were prepared by ATRP using direct initiation of the secondary chlorines of PVC. The successful syntheses of graft copolymers were confirmed by 1H‐NMR and FT‐IR spectroscopy. The images of transmission electron microscopy (TEM) presented the well‐defined microphase‐separated structure of the graft copolymer electrolyte membranes. All the properties of ion exchange capacity (IEC), water uptake, and proton conductivity for the membranes continuously increased with increasing PSSA contents. The characterization of the membranes by thermal gravimetric analysis (TGA) also demonstrated their high thermal stability up to 200°C. The membranes were further crosslinked using UV irradiation after converting chlorine atoms to azide groups, as revealed by FT‐IR spectroscopy. After crosslinking, water uptake significantly decreased from 207% to 84% and the tensile strength increased from 45.2 to 71.5 MPa with a marginal change of proton conductivity from 0.093 to 0.083 S cm?1, which indicates that the crosslinked PVC‐g‐PSSA membranes are promising candidates for proton conducting materials for fuel cell applications. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
10.
Kyoung‐Hee Lee Jung‐Ki Park Whi‐Joong Kim 《Journal of Polymer Science.Polymer Physics》1999,37(3):247-252
The polymer electrolytes composed of poly(acrylonitrile‐co‐lithium methacrylate) [P(AN‐co‐LiMA)], ethylene carbonate (EC), and LiClO4 salts have been prepared. The ion groups in the P(AN‐co‐LiMA) were found to prevent EC from crystallization through their ion–dipole interactions with the polar groups in the EC. This suppression of the EC crystallization could lead to the enhancement of the ion conductivity at subambient temperature. The polymer electrolytes based on the PAN ionomer with 4 mol % ion content exhibited ion conductivities of 2.4 × 10−4 S/cm at −10°C and 1.9 × 10−3 S/cm at 25°C by simply using EC as a plasticizer. In the polymer electrolytes based on the PAN ionomer, ion motions seemed to be coupled with the segmental motions of the polymer chain due to the presence of the ion–dipole interaction between the ion groups in the ionomer and the polar groups in the EC, while the ion transport in the PAN‐based polymer electrolytes was similar to that of the liquid electrolytes. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 247–252, 1999 相似文献
11.
To obtain solid polymer electrolytes (SPEs) having high ionic conductivity together with mechanical integrity, we have synthesized polystyrene (PSt)‐polyether (PE) diblock copolymers via one‐pot anionic polymerization. The PSt block is expected to aggregate to act as hard fillers in the SPE to enhance the mechanical property. The PE block consists of random copolymer (P(EO‐r‐MEEGE)) of ethylene oxide (EO) and 2‐(2‐methoxyethoxy) ethyl glycidyl ether (MEEGE) in different molar ratios ([EO]/[MEEGE] = 100/0, 86/14, 75/25, 68/32, and 41/59). The introduction of the MEEGE moiety in PEO reduced the crystallinity of PEO, and the fast motion of the MEEGE side chain caused plasticization of the PE block, thereby contributing to the fast ion transport. SPEs were fabricated by mixing the obtained diblock copolymer (PSEx) and lithium bis(trifluoromethanesulfonyl) amide (LiTFSA) with [Li]/[O] = 0.05. Ionic conductivity of the obtained SPEs was dependent on the molar ratio of EO in the PE block (x) as well as the weight fraction of PE block (fPE) in the block copolymer. PSE0.86 (fPE = 0.65) exhibited high ionic conductivity (3.3 × 10?5 S cm?1 at 30°C; 1.1 × 10?4 S cm?1 at 60°C) comparable with that of P(EO‐r‐MEEGE) (PE0.85; fPE = 1.00) (9.8 × 10?5 S cm?1 at 30°C; 4.0 × 10?4 S cm?1 at 60°C). 相似文献
12.
Patrik Gavelin Patric Jannasch Bengt Wessln 《Journal of polymer science. Part A, Polymer chemistry》2001,39(13):2223-2232
Amphiphilic graft copolymers were prepared via the radical copolymerization of poly(ethylene oxide) (PEO) macromonomers with fluorocarbon or hydrocarbon acrylates in toluene with 2,2′‐azobisisobutyronitrile (AIBN) as an initiator. 1H NMR spectroscopy confirmed that the composition of the graft copolymers corresponded well to the monomer feed. For gel electrolytes prepared from the amphiphilic copolymers, the nature of the ionophobic parts of the amphiphilic graft copolymers had a great influence on the ion conductivity. Gel electrolytes based on graft copolymers containing fluorocarbon side chains showed significantly higher ion conductivity than electrolytes based on graft copolymers containing hydrocarbon groups. The ambient‐temperature ion conductivity was about 2.6 mS/cm at 20 °C for a gel electrolyte based on an amphiphilic graft copolymer consisting of an acrylate backbone carrying PEO and fluorocarbon side chains. Corresponding gels based on graft copolymers with PEO side chains and hydrocarbon groups showed an ambient‐temperature ion conductivity of about 1.2 mS/cm. The gel electrolytes contained 30 wt % copolymer and 70 wt % 1 M LiPF6 in an ethylene carbonate/γ‐butyrolactone (2/1 w/w) mixture. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2223–2232, 2001 相似文献
13.
Hideki Sakai Takahiko Kodani Atsuko Takayama Mamoru Nomura 《Journal of Polymer Science.Polymer Physics》2002,40(10):939-947
Changes in minimum film‐formation temperature (MFFT) during storage of latexes prepared from 91:9 wt % vinylidene chloride (VDC)‐methyl methacrylate (MMA) monomer mixture by seeded batch and seeded semicontinuous emulsion polymerization were investigated, with attention centered on polymer‐crystallization behavior during storage in the dispersed state. MFFT of latex prepared by the seeded batch process rose to 47 °C, whereas that of latex prepared by seeded semicontinuous process remained below 14 °C with storage at 20 °C for 12 weeks. Infrared absorption of latexes in the dispersed state and wide‐angle X‐ray diffraction of powder polymers obtained by lyophilization of fresh and stored latexes both indicated a much greater increase in polymer crystallinity during storage with latex prepared by the seeded batch process than with that prepared by the seeded semicontinuous process. Analysis of the copolymer composition drift calculated from reactivity ratios and 1H NMR analysis indicated a wider sequence distribution and longer VDC sequences in polymer prepared by the seeded batch process than in polymer prepared by the seeded semicontinuous process. This explained the higher rate of crystallization during storage with latex prepared by the seeded batch process than with that prepared by the seeded semicontinuous process. Rising crystallinity during storage in the dispersed state is believed to have caused the MFFT rise. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 939–947, 2002 相似文献
14.
Hideki Sakai Takahiko Kodani Atsuko Takayama Mamoru Nomura 《Journal of Polymer Science.Polymer Physics》2002,40(10):948-953
Changes in the minimum film‐formation temperature (MFFT) of 91:9 wt % vinylidene chloride (VDC)‐methyl methacrylate (MMA) latex prepared by the seeded batch process during storage at 5, 20, and 40 °C were investigated. MFFT of the latex rose the fastest at 20 °C. Infrared absorption of fresh and stored latexes and wide‐angle X‐ray diffraction of powder polymers obtained by lyophilization of fresh and stored latexes indicated a much greater increase in polymer crystallinity during latex storage at 20 °C than at 5 and 40 °C. Observed increases in MFFT during latex storage correlated with increases in polymer crystallinity. Infrared absorption of polymer stored at 5–60 °C in the dry state, such as lyophilized polymer and coating film, indicated that a polymer crystallinity increase was greater during storage at higher temperatures. These results showed that crystallization behavior of 91:9 wt% VDC‐MMA copolymer latex differed from that of VDC‐MMA copolymer in the dry state. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 948–953, 2002 相似文献
15.
Herein, three ionic liquid random copolymers (P) containing 1‐vinyl‐3‐butylimidazolium bromide (VBImBr) and methyl methacrylate (MMA) with various molar ratios were prepared using conventional free radical polymerization. Afterward, their corresponding chemically cross‐linked copolymers (XP) were formed similarly in the presence of polyethylene glycol dimethacrylate (PEGDMA). The synthesized copolymers were characterized using FT‐IR, 1H NMR, and GPC. Differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) results showed that the rigidity and thermal stability of the copolymers depended on the ionic liquid content as well as the degree of cross‐linking. Gel polymer electrolytes were then prepared via obtained copolymers in the presence of a constant amount of synthesized imidazolium‐based ionic liquid. Among the copolymers, the P3 with in feed VBImBr:MMA molar ratio of 70:30 and the cross‐linked 1%‐XP3 copolymer prepared with 1 mol% of PEGDMA exhibited the highest conductivity and diffusion coefficients for I3¯ and I¯. The power conversion efficiency of the optimized linear and cross‐linked copolymers (P3 and 1%‐XP3) under the simulated AM 1.5 solar spectrum irradiation at 100 mW cm?2 were 3.49 and 4.13% in the fabricated dye‐sensitized solar cells (DSSCs), respectively. The superior long‐term stability and high performance of the gel electrolyte containing 1%‐XP3 suggested it as commercial gel electrolyte for future DSSCs. 相似文献
16.
Xiaodong He Xuewu Ge Huarong Liu Mozhen Wang Zhicheng Zhang 《Journal of polymer science. Part A, Polymer chemistry》2007,45(5):933-941
Submicron‐scaled cagelike polymer microspheres with hollow core/porous shell were synthesized by self‐assembling of sulfonated polystyrene (PS) latex particles at monomer droplets interface. The swelling of the PS latex particles by the oil phase provided a driving force to develop the hollow core. The latex particles also served as porogen that would disengage automatically during polymerization. Influential factors that control the morphology of the microspheres, including the reserving time of emulsions, polymerization rate, and the Hildebrand solubility parameter and polarity of the oil phase, were studied. A variety of monomers were polymerized into microspheres with hollow core/porous shell structure and microspheres with different diameters and pore sizes were obtained. The polymer microspheres were characterized by scanning electron microscopy, transmission electron microscopy, optical microscopy, and Fourier transform infrared spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 933–941, 2007 相似文献
17.
We have prepared polymer electrolytes composed of poly(methyl methacrylate-co-lithium methacrylate) ionomer (P(MMA-co-LiMA)), low molecular weight PEG, and LiCF3SO3 salt. The ion groups in P(MMA-co-LiMA) could enhance the miscibility between the MMA units and PEG in the polymer electrolytes. This miscibility enhancement made the pathway of ion transport less tortuous, and consequently led to the increase in ion conductivity. The maximum ambient ion conductivities in these systems were measured to be in the range of 10−4–10−5 S/cm. The polymer electrolytes became transparent at the higher ion content owing to the enhanced miscibility. The mechanical stability of the polymer electrolytes was also improved through the introduction of ion groups into the PMMA. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 991–997, 1998 相似文献
18.
D. E. Palmer N. T. McManus A. Penlidis 《Journal of polymer science. Part A, Polymer chemistry》2000,38(11):1981-1990
Previously published material on the α‐methyl styrene/methyl methacrylate (α‐MS/MMA) copolymer system at temperatures above the ceiling temperature of α‐MS has focused on low‐conversion results. Several attempts have been made to estimate copolymer reactivity ratios from experimental data, but in most cases errors are present in the determination of copolymer composition variables. In this article, the results of rigorous parameter estimations, as applied to two sets of equations developed independently by P. Wittmer (Adv Chem 1971, 99, 140–174) and H. Kruger, J. Bauer, and J. Rubner (Makromol Chem 1987, 188, 2163–2175), are discussed. Experimental data for the copolymer system at low conversions, as well as over the full conversion range, are presented, covering a temperature range of 60–140 °C. A comparison of the data trends with traditional copolymer systems indicates that the reversibility of both MMA and α‐MS must be considered when composition, polymerization rate, or molecular weight equations are being developed. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1981–1990, 2000 相似文献
19.
Carlo Carlini Valentina De Luise Marco Martinelli Anna Maria Raspolli Galletti Glauco Sbrana 《Journal of polymer science. Part A, Polymer chemistry》2006,44(1):620-633
New Nickel (II) catalytic systems based on N,O chelate ligands, activated by methylaluminoxane, have been checked in the homopolymerization of methyl methacrylate (MMA) and its copolymerization with ethylene. In particular, the bis(8‐hydroxy‐5‐nitro‐quinolate)nickel(II)/methylaluminoxane system as well as the catalysts obtained by oxidative addition of either 8‐hydroxy‐5‐nitro‐quinoline or 8‐hydroxy‐5,7‐dinitro‐quinoline or 4‐nitro‐2‐(p‐nitrobenzylideneamino)‐phenol to Ni(cod)2, subsequently activated by methylaluminoxane, have been employed. The influence of the reaction parameters on the catalytic activity and the characteristics of the resulting polymers has been investigated. All the obtained poly(methyl methacrylate) samples display a largely prevailing syndiotacticity degree, high molecular weights and a rather large polydispersity. The catalytic systems obtained through the oxidative procedure are able also to give copolymers of MMA with ethylene producing highly linear polyethylenes containing a low amount (1.5–2 mol %) of MMA counits, thus affording materials with improved surface properties. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 620–633, 2006 相似文献
20.
Kazuo Sugiyama Satoshi Mitsuno Kohei Shiraishi 《Journal of polymer science. Part A, Polymer chemistry》1997,35(16):3349-3357
A series of microspheres composed of methyl methacrylate (MMA) and N-(2-hydroxypropyl)methacrylamide (HPMA), and/or 2-(methacryloyloxy)ethyl phosphorylcholine (MPC), i.e., binary copolymer microspheres [poly(HPMA-co-MMA)KPS and poly(HPMA-co-MMA)ABIP] and ternary ones [poly(HPMA/MPC-co-MMA)KPS and poly(HPMA/MPC-co-MMA)ABIP], were prepared by emulsifier-free emulsion copolymerization using potassium peroxodisulfate (KPS) or 2,2′-azobis[2-(imidazolin-2-yl)propane] dihydrochloride (ABIP) as initiators. The decrease in ζ-potential of the polymer microspheres is caused by the addition of the HPMA and/or MPC moieties. Equilibrium water content of poly(HPMA-co-MMA)ABIP showed a remarkable swelling change with a change in response to temperature: the hydrated conformation at 28°C and the dehydrated one at above 40°C. The adsorption of protein on the polymer microspheres also changed in response to change in temperature. The ternary polymer microspheres effectively suppressed the adsorption both of Alb and Glo, less than binary ones. A series of polymer microspheres are expected to apply as a novel drug carrier with both thermosensitive and nonthrombogenic functions. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3349–3357, 1997 相似文献