首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A benzothioxanthene‐labeled ethylene‐butene rubber has been synthesized and tested as a potential fluorescent tracer for the impact modifier (IM) phase in laser scanning confocal fluorescence microscopy (LSCFM) studies of thermoplastic olefin (TPO) morphology. The amino‐functional Hostasol Yellow derivative HY‐DP reacts with maleated EBR‐28 to give a good labeling yield (ca. 70%) and a dye concentration of 0.051 mmol/g, when the maleated rubber is first refluxed over molecular sieves and the reaction purged with N2. Without pretreatment of the rubber and N2 purging, a lower labeling yield (0.036 mmol dye/g) is obtained and the labeled product tends to undergo crosslinking at 240 °C and subsequent dye detachment when the crosslinked gel is hydrolyzed. LSCFM studies reveal HY‐labeled EBR to be completely miscible and evenly dispersed in the unlabeled EBR‐9 of model TPO blends. Moreover, the HY‐labeled EBR provides good fluorescence contrast between the IM droplets and the PP matrix in the TPO blend PP/EBR (80/20) (w/w) + 3 wt % labeled polymer with respect to EBR. Imaging of IM droplets down to 40 μm below the film surface of this blend has been demonstrated. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 239–252, 2001  相似文献   

2.
The effect of shear flow on the structure of a phase‐separated, near‐critical blend of 50/50 (w/w) poly(styrene‐ran‐butadiene) and polybutadiene was studied with two different custom‐built rheo‐optical instruments that combined polymer melt flow and small‐angle light scattering (SALS). The deformation of the phase domains during shear flow was nonaffine, and the SALS patterns evolved from a spinodal ring (SR) pattern to a squashed SR with two high‐intensity lobes, to an H‐pattern, to a butterfly pattern with a dark streak along the equator, and finally to a steady‐state, elliptical pattern. The SALS patterns were explained in terms of a network model, in which the strands of the network first orient in the flow direction, then extend in this direction, and finally break up into droplets aligned in the flow direction. According to this picture, the strands in the vorticity direction do not deform until relatively high strains, after which the periodicity of the network begins to disappear. Supporting this model was the observation that the transitions between the different SALS patterns corresponded to inflections and/or maxima in the shear stress or first normal stress difference. Increasing the shear rate changed the kinetics of the structure evolution and reduced the size of the phase‐separated droplets in the steady state. No evidence was obtained for flow‐induced miscibility. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1725–1738, 2004  相似文献   

3.
The macromorphology of isotactic/atactic (iPP/aPP) and isotactic/syndiotactic (iPP/sPP) polypropylene mixtures is examined by optical microscopy. The spherulitic macrostructure of equimolecular weight [weight‐average molecular weight (Mw) = 200k] iPP/aPP blends is volume‐filling to very high aPP concentrations when the crystallization temperature is 130 °C. Similar spherulitic macrostructures (spherulite size and volume‐filling nature) are observed for iPP homopolymer and a 50/50 iPP/aPP blend at low crystallization temperatures (115–135 °C). At higher crystallization temperatures (140–145 °C), a equimolecular weight (Mw = 200k) 50/50 iPP/aPP blend exhibits nodular texture that blurs the spherulitic boundaries. Double temperature jump experiments show that the nodular texture is due to melt phase separation that develops prior to crystallization. The upper critical solution temperature (UCST) of a 50/50 iPP/aPP blend (Mw = 200k) lies below 155 °C, and the blend is miscible at conventional melt processing temperatures. The UCST behavior is controlled by the blend molecular weight and aPP microstructure. aPP microstructures containing increased isospecific sequencing (although still noncrystalline) exhibit a reduced tendency for phase separation in 50/50 mixtures (Mw = 200k) and the absence of nodular texture at low undercoolings (140–145 °C). Equimolecular weight (Mw = 200k) 50/50 iPP/sPP mixtures exhibit phase‐separated texture at all crystallization temperatures. The size scale of the phase‐separated texture decreases with decreasing crystallization temperature because of a competition between crystallization and phase separation from a melt initially well mixed from the initial solution blending process. Extended melt annealing experiments show that the 50/50 iPP/sPP mixture (Mw = 200k) is immiscible in the melt at conventional melt processing temperatures. The iPP/sPP pair shows a much stronger tendency for phase separation than the iPP/aPP polymer pair. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1947–1964, 2000  相似文献   

4.
Morphology development during isothermal crystallization in equal molecular weight isotactic polypropylene (iPP) and atactic polypropylene (aPP) blends was studied with time‐resolved simultaneous small‐angle X‐ray scattering (SAXS) and wide‐angle X‐ray scattering methods with synchrotron radiation. The final long period obtained after crystallization at 115 °C was nearly independent of blend composition up to 50 wt % aPP but showed an increase in the 80 wt % aPP blend. At a high crystallization temperature (137.5 °C), the increase in the final long period with aPP content was significant, and the evolution of iPP crystallinity was also affected. However, at low crystallization temperatures, the additive decrease of the crystallinity and the constant melting point with increasing aPP content suggest that the crystallizability and crystal morphology of iPP is not a strong function of aPP. The iPP/aPP blends showed a strong low‐angle SAXS upturn as a function of composition, which suggests the segregation of aPP on size scales larger than the lamellar spacing. A detailed analysis of the SAXS patterns indicates that aPP disrupts the ordering within the lamellar stacking. The results are generally consistent with predominantly interfibrillar incorporation of the aPP diluent within the microstructure, with only modest interlamellar incorporation dependent on the crystallization temperature. The findings can be attributed to the partial miscibility/mixing of the aPP and iPP components in the blend before crystallization, depending on the crystallization undercooling. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2580–2590, 2000  相似文献   

5.
马桂秋 《高分子科学》2015,33(11):1538-1549
The compatibility between isotactic polypropylene(i PP) and ethylene-propylene-diene terpolymer(EPDM) in the blends was studied. SAXS analysis indicates that i PP and EPDM phases in the binary blend are incompatible. Isothermal crystallization behaviors of i PP in phase-separated i PP/EPDM were studied by in situ POM equipped with a Linkam shear hot stage. It was found that typical spherulites of i PP were formed both in neat i PP and in i PP/EPDM blends. The radial growth rate(d R/dt) of spherulites of i PP in the blend was not influenced by EPDM phases. Further investigations on isothermal crystallization of i PP in i PP/EPDM after shear with a fixed shear time showed that the crystallization rate of i PP in the blends increased with increasing shear rates, whereas, the crystallization rate was much lower than that of neat i PP. WAXD results showed that ?-crystal i PP was formed in neat i PP as well as in i PP/EPDM blends after shearing and the percentage of ?-crystal bore a relationship to the applied shear rate. The presence of EPDM resulted in lower percentage of ?-crystal in the blends than that in neat i PP under the same constant shear conditions. SAXS experiments revealed that shear flow could induce formation of oriented lamellae in i PP and i PP in the blends, and the presence of EPDM led to a reduced fraction of oriented lamellae.  相似文献   

6.
This study describes the morphology and nonisothermal crystallization kinetics of poly(ethylene terephthalate) (PET)/isotactic polypropylene (iPP) in situ micro‐fiber‐reinforced blends (MRB) obtained via slit‐extrusion, hot‐stretching quenching. For comparison purposes, neat PP and PET/PP common blends are also included. Morphological observation indicated that the well‐defined microfibers are in situ generated by the slit‐extrusion, hot‐stretching quenching process. Neat iPP and PET/iPP common blends showed the normal spherulite morphology, whereas the PET/iPP microfibrillar blend had typical transcrystallites at 1 wt % PET concentration. The nonisothermal crystallization kinetics of three samples were investigated with differential scanning calorimetry (DSC). Applying the theories proposed by Jeziorny, Ozawa, and Liu to analyze the crystallization kinetics of neat PP and PET/PP common and microfibrillar blends, agreement was found between our experimental results and Liu's prediction. The increases of crystallization temperature and crystallization rate during the nonisothermal crystallization process indicated that PET in situ microfibers have significant nucleation ability for the crystallization of a PP matrix phase. The crystallization peaks in the DSC curves of the three materials examined widened and shifted to lower temperature when the cooling rate was increased. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 374–385, 2004  相似文献   

7.
The maleic anhydride‐grafted multiwalled carbon nanotubes (MWCNTs‐g‐MA) have been introduced into polypropylene/ethylene‐co‐vinyl acetate (PP/EVA) blend. To clearly describe the effects of MWCNTs‐g‐MA on the morphology and mechanical properties of PP/EVA blends, the selective distribution of MWCNTs‐g‐MA in the blends is realized through different sample preparation methods, namely, MWCNTs‐g‐MA disperse in EVA phase and MWCNTs‐g‐MA disperse in PP matrix. The results show that the distribution of MWCNTs‐g‐MA has an important effect on the final morphology of EVA and the crystallization structure of PP matrix. Compared with PP/EVA binary blend, distribution of MWCNTs‐g‐MA in PP matrix induces the aggregation of EVA phase at high EVA content and the decrease of spherulite diameters of PP matrix simultaneously. However, when MWCNTs‐g‐MA are dispersed in the EVA phase, they induce more homogeneous distribution of EVA, and the crystallization behavior of PP is slightly affected by MWCNTs‐g‐MA. The corresponding mechanical properties including impact strength and tensile strength are tested and analyzed in the work. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1481–1491, 2009  相似文献   

8.
We present a study of isotropic and uniaxially oriented binary blend films comprising ≤1 wt % of the conjugated polymer poly(9,9‐dioctylfluorene) (PFO) dispersed in both ultra‐high molecular weight (UHMW) and linear‐low‐density (LLD) polyethylene (PE). Polarized absorption, fluorescence and Raman spectroscopy, scanning electron microscopy, and X‐ray diffraction are used to characterize the samples before and after tensile deformation. Results show that blend films can be prepared with PFO chains adopting a combination of several distinct molecular conformations, namely glassy, crystalline, and the so‐called β‐phase, which directly influences the resulting optical properties. Both PFO concentration and drawing temperature strongly affect the alignment of PFO chains during the tensile drawing of the blend films. In both PE hosts, crystallization of PFO takes place during drawing; the resulting ordered chains show optimal optical anisotropy. Our results clarify the PFO microstructure in oriented blends with PE and the processing conditions required for achieving the maximal optical anisotropy. © 2014 The Authors. Journal of Polymer Science Part B: Polymer Physics Published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 22–38  相似文献   

9.
Poly(phenylene sulfide)/low‐melting‐point metal composites (PPSMs) with various loading levels were prepared by melt compounding. The nonisothermal crystallization behavior and transient viscoelastic properties were characterized by the DSC, POM, DMA, and parallel‐plate rheometer. The results reveal that the low‐melting‐point metal (LMPM) particles show nice dispersion at relative low content levels (< 30 wt %). The PPSMs composites present dual characteristics of both the filled polymer composite and polymer blend system in their transient viscoelastic behaviors, which results in occurrence of the stress overshoots with long relaxation time and nonzero residual stress especially at high shear levels. During the crystallization process, the presence of those deformable LMPM droplets facilitates the crystallization kinetics of PPS because of their flow‐promoting action. On the other hand, the LMPM has no heterogeneous nucleating effect and, only plays the role of inert filler, which results in the degradation of the crystal structure of PPS. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 677–690, 2008  相似文献   

10.
Morphology development during isothermal crystallization in equal molecular weight isotactic polypropylene (iPP), syndiotactic polypropylene (sPP), and iPP/sPP blends was studied with time‐resolved simultaneous small‐angle X‐ray scattering (SAXS) and wide‐angle X‐ray diffraction (WAXD) with synchrotron radiation. The sPP melting point is 15–20 °C below that of the iPP component, and sPP multiple melting is not affected by blending for 50–100 wt % sPP compositions. SAXS and WAXD (at 115 and 137.5 °C) show that sPP crystallizes more slowly than iPP. The sPP long spacing is larger than that of iPP at both crystallization temperatures, exhibits a broader distribution, and changes to a greater extent during crystallization. Differential scanning calorimetry (DSC) cooling and SAXS/WAXD measurements show iPP crystallizing first and nearly to completion before sPP in a 50:50 iPP/sPP blend. At 115 °C, iPP crystals nucleate sPP in a 50:50 blend and modify the sPP lamellar spacing. The nucleation does not overcome the large difference in the iPP and sPP rates at 137.5 °C. Before sPP crystallization in a 50:50 blend (115 °C), the iPP long spacing is not affected by molten sPP. The iPP long spacing is slightly expanded by molten sPP, and the WAXD induction time is delayed at 137.5 °C. The observed iPP long spacing in the presence of molten sPP is consistent with previously reported results for iPP/atactic polypropylene (aPP) blends of similar molecular weight. Quantitative differences between the two types of blends are consistent with previously reported thermodynamic rankings. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1876–1888, 2001  相似文献   

11.
Blends of isotactic polypropylene and polyamide‐6/clay nanocomposites (iPP/NPA6) were prepared with an internal batch mixer. A high content of the β‐crystalline form of isotactic polypropylene (β‐iPP) was observed in the injection‐molded samples of the iPP/NPA6 blends, whereas the content of β‐iPP in the iPP/PA6 blends and the iPP/clay composite was low and similar to that of neat iPP. Quiescent melt crystallization was studied by means of wide‐angle X‐ray diffraction, differential scanning calorimetry, and polarized optical microscopy. We found that the significant β‐iPP is not formed during quiescent melt crystallization regardless of whether the sample used was the iPP/NPA6 blend or an NPA6 fiber/iPP composite. Further characterization of the injection‐molded iPP/NPA6 revealed a shear‐induced skin–core distribution of β‐iPP and the formation of β‐iPP in the iPP/NPA6 blends is related to the shear flow field during cavity‐filling. In the presence of clay, the deformation ability of the NPA6 domain is decreased, as evidenced by rheological and morphological studies. It is reasonable that the enhanced relative shear, caused by low deformability of the NPA6 domain in the iPP matrix, is responsible for β‐iPP formation in the iPP/NPA6 blends. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3428–3438, 2004  相似文献   

12.
Crystallization studies at quiescent and shear states in isotactic polypropylene (iPP) containing nanostructured polyhedral oligomeric silsesquioxane (POSS) molecules were performed with in situ small‐angle X‐ray scattering (SAXS) and differential scanning calorimetry (DSC). DSC was used to characterize the quiescent crystallization behavior. It was observed that the addition of POSS molecules increased the crystallization rate of iPP under both isothermal and nonisothermal conditions, which suggests that POSS crystals act as nucleating agents. Furthermore, the crystallization rate was significantly reduced at a POSS concentration of 30 wt %, which suggests a retarded growth mechanism due to the molecular dispersion of POSS in the matrix. In situ SAXS was used to study the behavior of shear‐induced crystallization at temperatures of 140, 145, and 150 °C in samples with POSS concentrations of 10, 20, and 30 wt %. The SAXS patterns showed scattering maxima along the shear direction, which corresponded to a lamellar structure developed perpendicularly to the flow direction. The crystallization half‐time was calculated from the total scattered intensity of the SAXS image. The oriented fraction, defined as the fraction of scattered intensity from the oriented component to the total scattered intensity, was also calculated. The addition of POSS significantly increased the crystallization rate during shear compared with the rate for the neat polymer without POSS. We postulate that although POSS crystals have a limited role in shear‐induced crystallization, molecularly dispersed POSS molecules behave as weak crosslinkers in polymer melts and increase the relaxation time of iPP chains after shear. Therefore, the overall orientation of the polymer chains is improved and a faster crystallization rate is obtained with the addition of POSS. Moreover, higher POSS concentrations resulted in faster crystallization rates during shear. The addition of POSS decreased the average long‐period value of crystallized iPP after shear, which indicates that iPP nuclei are probably initiated in large numbers near molecularly dispersed POSS molecules. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2727–2739, 2001  相似文献   

13.
Crystalline structures, nonisothermal crystallization behavior and surface folding free energy of polypropylene (PP)/poly(ethylene‐co‐vinyl acetate) (EVA) blend‐based organically modified montmorillonite (OMMT) nanocomposites were investigated by use of wide angle X‐ray scattering (WAXS) and differential scanning calorimetry (DSC) techniques. Nonisothermal crystallization kinetic analysis was performed using Avrami equation modified by Jeziorny as well as combined Avrami‐Ozawa method. Surface folding free energy and activation energy for PP and nanocomposite samples were also determined employing Hoffman‐Lauritzen's and Vyazovkins's approaches, respectively. The results obtained from transmission electron microscopy (TEM) showed that presence of EVA, which attracts most of the layered silicates, reduces number density of heterogeneous nuclei in the matrix and as a consequence, decreases the nucleation rate. Incorporation of EVA, PP‐g‐MA and OMMT results in a decrease of the chain surface folding free energy level. It was shown that although, OMMT acts as a barrier against the PP macromolecular motion but interestingly, it increases the overall crystallization rate. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 674–684, 2009  相似文献   

14.
A layer multiplying coextrusion process was used to produce multilayered polypropylene/polystyrene (PP/PS) films with various nucleating agents. When heated into the melt, the thin PP layers broke up into submicron PP droplets that exhibited fractionated crystallization. If the initial PP layers were 20 nm or less, the resulting droplets exhibited exclusively homogeneous nucleation. If a nucleating agent was added, the systematic departure from homogeneous nucleation provided insight into the nature of the heterogeneous nucleation. In this study, we used thermal analysis, atomic force microscopy (AFM), and wide angle X‐Ray scattering (WAXS) to examine the effect of two nucleating agents. We confirmed with WAXS and AFM that a soluble sorbitol nucleating agent for the PP α‐form operates in three concentration regimes as proposed in a previous study. Morphologically, homogeneous nucleation of the submicron droplets produced a granular texture. The correlation length from small‐angle X‐Ray scattering (SAXS) suggested that the grains contained 1–3 mesophase domains. Drawing on classical nucleation theory, the critical size nucleus of an individual mesophase domain was estimated to be about 2 nm3, which was considerably smaller than the mesophase domain. This pointed to mesophase crystallization that included the processes of nucleation and growth. Additional experiments were performed with nucleating agents for the PP β‐form. However, they were not effective in nucleating crystallization of the droplets, presumably because they were essentially insoluble in PP and the nucleating particles were too large to be accommodated in the PP droplets. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

15.
The crystallization behaviors of isotactic polypropylene (iPP) and its blends with thermoelastomers have been investigated with in situ X‐ray scattering and optic microscopy. At quiescent condition, the crystallization kinetics of iPP is not affected by the presence of elastomers; while determined by the viscosity, the differences are observed on sheared samples. With a fixed shear strain, the crystallization rate increases with increasing the shear rate. The fraction of oriented lamellar crystals in blends is higher than that in pure iPP sample, while the percentage of β phase is reduced by the presence of the elastomers. On the basis of experimental results, no direct correlation among the fraction of oriented lamellae, the percentage of β phase, and growth rate can be deduced. The evolution of the fraction of oriented lamellae supports that shear field promotes nucleation rather than growth process. Shear flow induces the formation of nuclei not only with preferring orientation but also with random orientation. The total density of nuclei, which determines the crystallization kinetics, does not control the ratio between nuclei with and without preferring orientation, which determines the fraction of oriented lamellae. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1188–1198, 2006  相似文献   

16.
This article describes the oriented crystallization of poly(L ‐lactic acid) (PLLA) in uniaxially oriented blends with poly(vinylidene fluoride) (PVDF). Uniaxially drawn films of PLLA/PVDF blend with fixed ends were heat‐treated in two ways to crystallize PLLA in oriented blend films. The crystal orientation of PLLA depended upon the heat‐treatment process. The crystal c‐axis of the α form crystal of PLLA was highly oriented in the drawing direction in a sample cold‐crystallized at Tc = 120 °C, whereas the tilt‐orientation of the [200]/ [110] axes of PLLA was induced in the sample crystallized at Tc = 120 °C after preheating at Tp = 164.5–168.5 °C. Detailed analysis of the wide‐angle X‐ray diffraction (WAXD) indicated that the [020]/ [310] crystal axes were oriented parallel to the drawing direction, which causes the tilt‐orientation of the [200]/ [110] axes and other crystal axes. Scanning electron microscopy (SEM) suggested that oriented crystallization occurs in the stretched domains of PLLA with diameters of 0.5–2.0 μm in the uniaxially drawn films of PVDF/PLLA = 90/10 blend. Although the mechanism for the oriented crystallization of PLLA was not clear, a possibility was heteroepitaxy of the [200]/[110] axes of the α form crystal of PLLA along the [201]/[111] axes of the β form crystal of PVDF that is induced by lattice matching of d100(PLLA) ≈ 5d201(PVDF). © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1376–1389, 2008  相似文献   

17.
Polyethylene terephthalate (PET)/Polypropylene (PP)/TiO2 nanocomposites were prepared by compounding a PP/TiO2 nanocomposite premix with PET in absence and presence (up to 6 vol %) of maleic anhydride grafted polypropylene (PP‐g‐MA). In absence of PP‐g‐MA, the TiO2 nanoparticles were mainly located at the PET/PP interface and to a lesser extent in the dispersed PET droplets. As the TiO2 nanoparticles were coated by polyalcohol their surface could react with PP‐g‐MA and thus improving the compatibilization with PP. Therefore in presence of PP‐g‐MA the TiO2 nanoparticles were preferentially located in the PP. The incorporated TiO2 nanoparticles exerted a compatibilization effect on the PET/PP blend. Depending on the location of TiO2 three different compatibilization mechanisms were proposed to be at work: (1) Locating at the interface, the TiO2 nanoparticles decrease the free energy of mixing, and thus increase the thermodynamic stability of the nanocomposites; (2) The TiO2 nanoparticles at the interface also prevent the coalescence of PET droplets; (3) Preferentially located in the PP matrix, the TiO2 nanoparticles decreased the viscosity ratio which facilitated the droplet breakup of PET. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1616–1624, 2009  相似文献   

18.
The structure and mechanical properties of the injection‐molded products for the binary blends composed of an isotactic polypropylene (PP) and a rubbery ethylene‐1‐hexene copolymer (EHR) were studied. The following two types of blends were employed: one is the incompatible blend of PP and ethylene‐rich EHR; the other is the compatible blend of PP and 1‐hexene‐rich EHR. The incompatible blend shows a phase‐separated morphology, in which EHR domains in the skin layer highly orient to the flow direction. On the other hand, the compatible blend shows fairly homogeneous morphology in the skin and core regions, in which EHR molecules are dissolved into the amorphous PP region. The measurements of birefringence and infrared dichroism revealed that the magnitude of molecular orientation along the flow direction for the compatible blend is larger than that for the incompatible blend. Nevertheless, it was also found that anisotropy of the mechanical properties for the compatible blend is less prominent, which is attributed to lack of the mechanical connection between neighbor crystalline fragments aligned perpendicular to the flow direction. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 701–713, 1999  相似文献   

19.
Crystallization behavior of polypropylene/polycarbonate blends   总被引:2,自引:0,他引:2  
Crystallization behavior and morphology of polypropylene (PP)/polycarbonate (PC) blends have been studied by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). In the study of non-isothermal crystallization of the blends, the phenomenon of multiple crystallization peaks of PP/PC blends was related to the blend morphology in which PP was the dispersed phase as small droplets in the PC matrix. The phenomenon of a single crystallization peak of the PP/PC blends was related to the blend morphology in which PP was a continuous phase; in that case the crystallization peak temperatures of the blends were higher than that of the PP. The isothermal crystallization kinetics of the PP and PP/PC (80/20) blend were described by the Avrami equation. The results showed that the Avrami exponent of the PP/PC (80/20) blend was higher than that of the PP, and the crystallization rate of the PP/PC (80/20) blend was faster than that of the PP. The crystallization rate of the PP and PP/PC (80/20) blend were calculated according to the Hoffmann theory. Both the PP and PP/PC (80/20) blend had maximum crystallization rates. The temperature at the maximum crystallization rate for the PP/PC (80/20) blend was higher than that of the PP.  相似文献   

20.
Simultaneous kinetic measurement of microscopic infrared dichroism, macroscopic stress, and mesoscale strain was used to study the deformation mechanisms of metallocene polypropylene (MPP), ethylene–butylene rubber (EBR), and their blend (MPP/EBR = 80/20 w/w). As with pure MPP, the molecular orientation in the blend is dominated by the necking of the isotactic polypropylene matrix. During the necking passage through the mesoscale sampling area, the molecular orientation of the polypropylene matrix in the blend is smaller than that in the pure polypropylene film at the same level of mesoscale strain. However, the orientation of the EBR dispersed phase in the blend is larger than that in the pure EBR film. This may result from the partial miscibility of the two ingredients in the amorphous phases and their resultant strong interfacial interaction. The large stress supported by the MPP matrix extends to the island of the EBR domain and leads to its large deformation. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1520–1531, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号