首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first organically templated vanadium tellurites, [H2en][(VO2)(TeO3)]2·H2O (1, en=ethylenediamine) and [H2pip][(VO2)(TeO3)]2 (2, pip=piperazine) have been synthesized by hydrothermal reactions and structurally characterized. Both compounds feature a [(VO2)(TeO3)] anionic layer containing V2Te2 four-member rings and V4Te4 eight member rings. The vanadium (V) atom is five coordinated by three tellurite oxygens and two terminal oxygen atoms in a distorted trigonal bipyramidal geometry. The interconnection of the VO5 polyhedra by bridging tellurite groups leads to a 2D corrugated anionic inorganic layer. The doubly protonated template cations and the lattice water molecules in 1 are located at the interlayer space and are involved in hydrogen bonding. The doubly protonated template cation in 2 is not involved in hydrogen bonding with the anionic inorganic layer.  相似文献   

2.
Vanadium tellurites display a rich structural chemistry with interesting physical properties, such as second harmonic generation (SHG). Tellurites, i.e. Te4+Ox, are often observed in unusual structures and form various structural motifs, including isolated clusters, chains, layers, and three‐dimensional networks. Similarly, vanadates, i.e. V5+Ox, show rich structural features, such as VO4 tetrahedra, VO5 square pyramids or trigonal bipyramids, and VO6 octahedra. Strontium vanadium tellurite, Sr7V4Te12O41, was obtained from the melt of the solid‐state reaction of SrTeO4 and VO2 in a sealed quartz tube as it cooled from 973 K. The crystal structure exhibits a one‐dimensional latticework along the a axis comprised of paired Sr3Te3Ox units, namely Sr6Te6O2x+1, with corner‐shared TeO4 polyhedra – and specifically the Te lone‐pair electrons – facing outward in the bc plane. The Sr6Te6O2x+1 latticework is helical and is layered in the b‐axis direction against sheets of corner‐shared VO4 tetrahedra, and is linked in the c‐axis direction via individual corner‐shared SrO8 square prisms.  相似文献   

3.
Two new isostructural compounds with composition of Rb+V3+0.125V5+0.625Te6+1.25O6 and Cs+V3+0.125V5+0.625Te6+1.25O6 have been synthesized by solid-state reaction. The crystal structure has been determined by X-ray diffraction analysis using Rietveld refinement. Both compounds possess β-pyrochlore structure-type with cubic space group Fd-3 m (Z=8); the unit cell parameters: a=10.04120(27) Å for RbV0.75Te1.25O6 Å and a=10.09119(23) Å for CsV0.75Te1.25O6. The oxidation states of vanadium and tellurium have been confirmed by X-ray photoelectron spectroscopy. The compounds contain vanadium in mixed valence state (3+ and 5+). The compounds possess the unusual narrow band gap for oxide compounds – in the infrared (IR) range (∼0.6 eV). The schematic electronic structure of the compounds has been estimated using XPS, UPS and electronic conductivity data; however, the shifts of the top of the valence edge and the bottom of the conduction band in the water conditions have been calculated using theoretical approximation. The thermal behavior of obtained compounds has been studied by differential thermal analysis. RbV0.75Te1.25O6 and CsV0.75Te1.25O6 melts at low temperatures (∼500 °C) with decomposition and weight loss. The RbV0.75Te1.25O6 powder decomposes to amorphous phase, whereas CsV0.75Te1.25O6 transform into new β-pyrochlore compound with another composition.  相似文献   

4.
Abstract . Three new copper–zinc–tellurites, Zn4Cu(TeIVO3)4Cl2, Cu2Zn2(TeIVO3)2(SO4)(OH)2 · H2O and Cu2Zn(TeIVO4)(SO4) · H2O (henceforth I , II and III ), were synthesized under mild hydrothermal conditions (473 K, in Teflon-lined steel vessels). They were characterized in detail by a combination of crystal-structure determination (using single-crystal X-ray diffraction data), single-crystal micro-Raman spectroscopy and chemical analyses (energy-dispersive X-ray spectroscopy in a scanning electron microscope). Each compound crystallizes in a new structure type, and additionally, II and III represent the first two ever reported copper–zinc–tellurite–sulfates. I [systematic name: tetrazinc copper(II) tetrakis-oxotellurate(IV) dichloride] is triclinic, P1 , and forms a framework structure based on ZnO6 and ZnO5Cl octahedra, linked into sheets connected via Jahn–Teller-distorted CuO4Cl2 octahedra, with TeIVO3 trigonal pyramids and TeIV2O6 dimers (composed of two edge-sharing TeIVO4 disphenoids) filling the remaining space. II [dicopper(II) dizinc bis-oxotellurate(IV) oxosulfate(VI) bis-hydroxide monohydrate] is trigonal, R3m, with a simonkolleite-like framework. Distinct layers formed from (Cu,Zn)φ6 (φ = O, OH) octahedra and TeIVO3 trigonal pyramids extend parallel to (001) and sandwich disordered SO42– anions and H2O groups. III [dicopper(II) zinc oxotellurate(IV) oxosulfate(VI) hydrate] is orthorhombic, Pnma, and also has a layered structure [extending parallel to (100)]. Positively charged layers of composition [Cu2ZnTeIVO4]2+ (containing Te as TeIVO4 disphenoids) alternate with SO42– anions and H2O groups in the interlayer space. Stacking disorder caused by the order-disorder nature of the crystal structure is reflected by the presence of residual electron density in difference-Fourier maps and the structure was refined as an overlay of two stacking possibilities.  相似文献   

5.
Two new vanadium tellurites, Cu(TATP)V2TeO8 (1) and Cu(DPPZ)V2Te2O10 (2), (TATP=1,4,8,9-tetranitrogen-trisphene, DPPZ=dipyridophenazine) have been synthesized under hydrothermal conditions and structurally characterized by elemental analyses, IR, and single-crystal X-ray diffraction. Compound 1 features an interesting two-dimensional layer structure constructed by [V2TeO8]n double-chain-like ribbons linked by [Cu(TATP)]2+ bridges. Compound 2 consists of two types of chiral layers: one left-handed and the other right-handed, which lead to racemic solid-state compound. In each layer, there exist two types of inorganic helical chains (V4Te4O8)n and (Te2O2)n, with same handedness. Two types of helical chains are linked by μ3(O6) atoms to generate a V/Te/O inorganic anionic layer. The [Cu(DPPZ)]2+ cationic complex fragments are covalently bonded to the layer, projecting below and above the vanadium tellurites layer.  相似文献   

6.
New polar vanadium tellurite enantiomers have been synthesized under mild hydrothermal conditions through the use of sodium metavanadate, sodium tellurite and enantiomerically pure sources of either R-3-aminioquinuclidine or S-3-aminioquinuclidine. [R-C7H16N2][V2Te2O10] and [S-C7H16N2][V2Te2O10] contain [V2Te2O10]n2n layers constructed from [(VO2)2O(TeO4)2] monomers. Steric effects associated with the hydrogen-bonding network between the [V2Te2O10]n2n layers and [C7H16N2]2+ result in polar structures and crystallization in the space group P21 (no. 4). Electron localization functions were calculated to visualize the tellurite stereoactive lone pairs. Both iterative and non-iterative Hirshfeld techniques were evaluated as means to determine atomic partial charges, with iterative Hirshfeld charges more accurately representing charge distributions in the reported enantiomers. These charges were used to calculate both component and net dipole moments. [R-C7H16N2][V2Te2O10] and [S-C7H16N2][V2Te2O10] exhibit dipole moments of 17.37 and 16.62D, respectively. [R-C7H16N2][V2Te2O10] and [S-C7H16N2][V2Te2O10] both display type 1 phase-matching capabilities and exhibit second harmonic generation activities of ∼50×α-SiO2.  相似文献   

7.
The reactions of Te2Br with MoOBr3, TeCl4 with MoNCl2/MoOCl3, and Te with WBr5/WOBr3 yield black, needle-like crystals of [Te15X4][MOX4]2 (M = Mo, W; X = Cl, Br). The crystal structure determinations [Te15Br4][MoOBr4]2: monoclinic, Z = 1, C2/m, a = 1595.9(4) pm, b = 403.6(1) pm, c = 1600.4(4) pm, β = 112.02(2)°; [Te15Cl4][MoOCl4]2: C2/m, a = 1535.3(5) pm, b = 402.8(2) pm, c = 1569.6(5) pm, β = 112.02(2)°; [Te15Br4][WOBr4]2: C2, a = 1592.4(4) pm, b = 397.5(1) pm, c = 1593.4(5) pm, β = 111.76(2)° show that all three compounds are isotypic and consist of one-dimensional ([Te15X4]2+)n and ([MOX4]?)n strands. The structures of the cationic strands are closely related to the tellurium subhalides Te2X (X = Br, I). One of the two rows of halogen atoms that bridges the band of condensed Te6 rings is stripped off, and additionally one Te position has only 75% occupancy which leads to the formula ([Te15X4]2+)n (X = Cl, Br) for the cation. The anionic substructures consist of tetrahalogenooxometalate ions [MOX4]? that are linked by linear oxygen bridges to polymeric strands. The compounds are paramagnetic with one unpaired electron per metal atom indicating oxidation state Mv, and are weak semiconductors.  相似文献   

8.
Synthesis and Crystal Structure of the Ionic Tellurium Nitride Chloride[Te3N2Cl5(SbCl5)]+SbCl6? The title compound has been prepared by the reaction of Te2NCl5 with antimony pentachloride in CH2Cl2 suspension. It is characterized by IR spectroscopy and by a crystal structure determination. Space group P21/c, Z = 4, lattice dimensions at ?70°C: a = 1535.6, b = 1259.5, c = 1572.4 pm, β = 109.30°, R = 0.031. The compound forms an ionic pair with the central group of a (TeNCl)2 molecule in which the tellurium atoms are linked by the nitrogen atoms to give a planar Te2N2 four-membered ring. One of the nitrogen atoms is coordinated by a TeCl3+ unit, the other one by an antimony pentachloride molecule. According to the IR spectra a structure like [Te2N2Cl2(TeCl4)2] is proposed for Te2NCl5.  相似文献   

9.
Under solvothermal conditions, the reaction of Te, TeBr4 and UBr5 in SiBr4 at 200?C yields Te8[U2Br10] as silvery crystals. The crystal structure (triclinic, P&1macr;, a = 900.8(4), b = 1205.1(5), c = 1366.0(6) pm, α = 80.93(4)?, β = 76.83(3)?, γ = 78.84(3)?, Z = 2) is built of one‐dimensional polymeric (Te82+)n cations consisting of boat‐shaped Te6 rings, which are linked by Te2 bridges. The anions [U2Br102‐]n are also polymeric, consisting of edge sharing UBr7 pentagonal bipyramids [UBr3Br4/22‐]n and contain U(IV). Both chains are parallel to each other and run along the crystallographic a‐axis. The cation represents a formerly unknown isomer of Te82+ ions. So far, Te82+ has been known as molecular clusters in Te8[MCl6](M = Zr, Hf, Re) and (Te8)(Te6)[WCl6]4, or in form of linked bicyclic monomers that are present in Te8[WCl6]2. A polymeric chain‐like form closely related to Te8[U2Br10] was found in Te8[Bi4Cl14].  相似文献   

10.
While exploring the chemistry of tellurium‐containing dichalcogenidoimidodiphosphinate ligands, the first all‐tellurium member of a series of related square‐planar EII(E′)4 complexes (E and E′ are group 16 elements), namely bis(P,P,P′,P′‐tetraphenylditelluridoimidodiphosphinato‐κ2Te,Te′)tellurium(II) (systematic name: 2,2,4,4,8,8,10,10‐octaphenyl‐1λ3,5,6λ4,7λ3,11‐pentatellura‐3,9‐diaza‐2λ5,4λ5,8λ5,10λ5‐tetraphosphaspiro[5.5]undeca‐1,3,7,9‐tetraene), C48H40N2P4Te5, was obtained unexpectedly. The formally TeII centre is situated on a crystallographic inversion centre and is Te,Te′‐chelated to two anionic [(TePPh2)2N] ligands in an anti conformation. The central TeII(Te)4 unit is approximately square planar [Te—Te—Te = 93.51 (3) and 86.49 (3)°], with Te—Te bond lengths of 2.9806 (6) and 2.9978 (9) Å.  相似文献   

11.
[K(15-Crown-5)2]2Te8 – a Bicyclic Polytelluride The octatelluride [K(15-crown-5)2]2Te8 has been synthesized by the oxydation of a potassium tritelluride solution in dimethylformamide by iron(III) chloride in the presence of 15-crown-5, forming black crystals, which were characterized by an X-ray structure determination. Space group Pca21, Z = 4, 4 548 observed unique reflections, R = 0.048. Lattice dimensions at –70°C: a = 1 881(1), b = 2 211(2), c = 1 530(1) pm. The structure consists of cations [K(15-crown-5)2]+, in which the potassium ions are sandwichlike coordinated by the oxygen atoms of the two disordered crown ether molecules, and of bicyclic Te82? ions. In these anions a Te2+ ion is chelated in a planar fashion by a Te32? and a Te42? unit.  相似文献   

12.
The title compound, [Te8][NbOCl4]2, was obtained as translucent black crystals by reaction of elemental tellurium, niobium(V) chloride and niobium(V) oxychloride in the ionic liquid BMImCl (BMImCl is 1‐butyl‐3‐methylimidazolium chloride). The synthesis was performed in argon‐filled glass ampoules. According to X‐ray structure analysis based on single crystals, the title compound crystallizes with triclinic lattice symmetry and consists of infinite {[Te8]2+}n cations associated with pyramidal [NbOCl4] anions. The novel catena‐octatellurium(2+) cation is composed of Te5 rings that are linked via Te3 units [Te—Te = 2.6455 (18)–2.8164 (19) Å]. The composition and purity of [Te8][NbOCl4]2 were further confirmed by energy‐dispersive X‐ray diffraction (EDX) analysis.  相似文献   

13.
In contrast with the multiple twinning and/or domain formation found in the mica‐like polymorphs of CaTe2O5, calcium pentaoxidoditellurate(IV), that have been prepared by solid‐state reactions and for which complete structure determinations have not been successful up to now, the crystal structure of a hydrothermally grown phase was fully determined from a non‐twinned crystal. The structure is made up of alternating layers of Ca2+ cations and of 2[Te2O5]2− anions stacked along [100]. The lone‐pair electrons E of the TeIV atoms are stereochemically active and protrude into channels within the anionic layer. In comparison with analogous MIITe2O5 structures (M = Mg, Mn, Ni or Cu) with ditellurate(IV) anions that are exclusively made up of corner‐sharing TeOx (x = 3–5) polyhedra resulting in flat 2[Te2O5]2− layers, the anionic layers in CaTe2O5 are undulating and are built of corner‐ and edge‐sharing [TeO4] polyhedra.  相似文献   

14.
An innovative soft chemical approach was applied, using ionic liquids as an alternative reaction medium for the synthesis of tellurium polycationic cluster compounds at room temperature. [Mo2Te12]I6, Te6[WOCl4]2, and Te4[AlCl4]2 were isolated from the ionic liquid [BMIM]Cl/AlCl3 ([BMIM]+: 1‐n‐butyl‐3‐methylimidazolium) and characterized. Black, cube‐shaped crystals of [Mo2Te12]I6, which is not accessible by conventional chemical transport reaction, were obtained by reaction of the elements at room temperature in [BMIM]Cl/AlCl3. The monoclinic structure (P21/n, a = 1138.92(2) pm, b = 1628.13(2) pm, c = 1611.05(2) pm, β = 105.88(1) °) is homeotypic to the triclinic bromide [Mo2Te12]Br6. In the binulear complex [Mo2Te12]6+, the molybdenum(III) atoms are η4‐coordinated by terminal Te42+ rings and two bridging η2‐Te22– dumbbells. Despite the short Mo···Mo distance of 297.16(5) pm, coupling of the magnetic moments is not observed. The paramagnetic moment of 3.53 μB per molybdenum(III) atom corresponds to an electron count of seventeen. Black crystals of monoclinic Te6[WOCl4]2 are obtained by the oxidation of tellurium with WOCl4 in [BMIM]Cl/AlCl3. Tellurium and tellurium(IV) synproportionate in the ionic liquid at room temperature yielding violet crystals of orthorhombic Te4[AlCl4]2.  相似文献   

15.
A series of Cs2Te0.2H0.6 + x PMo12 − x V x O n (x = 0–3) heteropoly compounds has been prepared and tested in the partial oxidation of isobutane. Catalytic tests show that at 350°C very high selectivity to methacrylic acid (60.1%) can be achieved at isobutane conversion of 12.2% over a Cs2.0Te0.2H1.6PMo11VO n catalyst with only one molybdenum atom per unit cell substituted by vanadium. The presence of Te4+ in the heteropoly compounds appears to interfere with the dehydrqgenation step and favor the formation of methacrolein and methacrylic acid.  相似文献   

16.
Polymeric, Band Shaped Tellurium Cations in the Structures of the Chloroberyllate Te7[Be2Cl6] and the Chlorobismutate (Te4)(Te10)[Bi4Cl16] Te7[Be2Cl6] is obtained at 250 °C in an eutectic Na2[BeCl4] / BeCl2 melt from Te, TeCl4 und BeCl2 in form of black crystals, which are sensitive towards hydrolysis in moist air. (Te4) (Te10)[Bi4Cl16] is prepared from Te, TeCl4 und BiCl3 by chemical vapour transport in sealed evacuated glass ampoules in a temperature gradient 150 ° → 90 °Cin form of needle shaped crystals with a silver lustre. The structures of both compounds were determined based on single crystal X‐ray diffraction data (Te7[Be2Cl6]: orthorhombic, Pnnm, Z = 2, a = 541.60(3), b = 974.79(6), c = 1664.4(1) pm; (Te4)(Te10)[Bi4Cl16]: triclinic, P1¯, Z = 2, a = 547.2(3), b = 1321.1(7), c = 1490(1) pm, α = 102.09(5)°, β = 95.05(5)°, γ = 96.69(4)°). The structure of Te7[Be2Cl6] consists of one‐dimensional polymeric cations (Te72+)n which form folded bands and of discrete [Be2Cl6]2— anions which form double tetrahedraconnected by a common edge. By a different way of folding compared with the cations present in the structures of Te7[MOX4]X (M = Nb, W; X = Cl, Br) the (Te72+)n cation in Te7[Be2Cl6]represents a new, isomeric form. The structure of (Te4)(Te10)[Bi4Cl16] contains two different polymeric cations. (Te102+)n consists of planar Te10 groups in the form of three corner‐sharing Te4 rings connected to folded bands. (Te42+)n forms in contrast to the so far notoriously observed discrete, square‐planar E42+ ions a chain of rectangular planar Te4 rings (Te—Te 274 and 281 pm) connected by Te‐Te bonds of 297 pm. [Bi4Cl16]4— has a complex one‐dimensional structure of edge‐ and corner‐sharing BiCl7 units.  相似文献   

17.
Two new molecular metal chalcogenides, tris­(ethyl­enedi­amine‐N,N′)­manganese(II) tetratelluride, [Mn(C2H8N2)3]Te4, (I), and bis­[tris­(ethyl­enedi­amine‐N,N′)­iron(II)] penta­seleno­diantimonate(III), [Fe(C2H8N2)3]2(Sb2Se5), (II), containing the isolated molecular building blocks Te42? and Sb2Se54?, have been synthesized by solvothermal reactions in an ethyl­enedi­amine solution at 433 K. The anion Te42? in (I) is a zigzag oligometric chain with Te—Te bond lengths in the range 2.709–2.751 Å. There is a very short contact [3.329 (1) Å] between a pair of neighboring Te42? anions. In (II), each Sb atom is surrounded by three Se atoms to give a tripodal coordination. One of the three independent Se atoms is a μ2‐bridging ligand between two Sb atoms; the other two are terminal.  相似文献   

18.
Synthesis and Crystal Structure of Te3O3(PO4)2, a Compound with 5‐fold Coordinate Tellurium(IV) Polycrystalline Te3O3(PO4)2 is formed during controlled dehydration of (Te2O3)(HPO4) with (Te8O10)(PO4)4 as an intermediate product. Colourless single crystals were prepared by heating stoichiometric amounts of the binary oxides P2O5 und TeO2 in closed silica glass ampoules at 590 °C for 8 hours. The crystal structure (P21/c, Z = 4, α = 12.375(2), b = 7.317(1), c = 9.834(1)Å, β = 98.04(1)°, 1939 structure factors, 146 parameters, R[F2 > 2σ(F2)] = 0.0187, wR2(F2 all) = 0.0367) was determined from four‐circle diffractometer data and consists of [TeO5] polyhedra und PO4 tetrahedra as the main building units. The framework structure is made up of cationic zigzag‐chains of composition [Te2O3]2+ which extend parallel to [001] and anionic [Te(PO4)2]2— units linked laterally to these chains. This leads to the formation of [Te2O3][Te(PO4)2] layers parallel to the bc plane which are interconnected via weak Te‐O bonds.  相似文献   

19.
The reaction of an electron‐rich transition metal M (M = Ru, Rh, Ir), tellurium and TeX4 (X = Cl, Br, I) resulted in black crystals of five ternary coordination polymers with the general composition [MIII(Te6)]X3 (M = Rh, Ir) and of the molecular cluster compound [RuII2(Te6)](TeIIBr3)4(TeIIBr2)2. X‐ray diffraction on single‐crystals revealed that the compounds [M(Te6)]X3 crystallize isostructurally in the trigonal space group type R$\bar{3}$ c. In their crystal structures linear, positively charged [MIII(Te6)] chains form the motif of a hexagonal rod packing. In the chain, each of the formally uncharged Te6 molecules with chair conformation acts as a bis‐tridentate bridging ligand to two M atoms. The octahedrally coordinated M atoms are spiro atoms in the chain of trans vertices sharing heterocubane fragments. Including the isolated halide ions, which provide charge balance, the entire arrangement resembles a cut‐out of the α‐polonium structure type.In the monoclinic compound Ru2Te12Br16 (space group P21/n), the ruthenium atoms of the hetero‐cubane core of the molecular cluster [Ru2(Te6)](TeBr3)4(TeBr2)2 are saturated by terminal bromidotellurate(II) groups. Again, the Te6 ring is formally uncharged. With the tellurium atoms acting as electron‐pair donors the 18 electron rule is fulfilled for the M atoms in all compounds.  相似文献   

20.
Synthesis and Crystal Structure of [Na(15-Crown-5)]4[Cd4Te12] · 8 DMF The title compound has been prepared by reaction of Na2Te3 with cadmium acetate in DMF solution in the presence of 15-crown-5, forming black crystal needles, which were characterized by an X-ray structure determination. Space group P21/n, Z = 2, 5 716 observed unique reflections, R = 0.038. Lattice dimensions at ?50°C: a = 1 622.9, b = 2 038.2, c = 1 739.8 pm, β = 92.26°. The compound has an ionic structure. The cations [Na(15-crown-5)(DMF)]+ and [Na(15-crown-5) · (DMF)2]+ together with two further DMF molecules form tetrameric units. In the centrosymmetric anions [Cd4Te12]4? the cadmium atoms are linked by μ2-Te2?-, μ4-Te22?-, and μ2-Te32?-units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号