首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The methanolytic degradation of poly(ethylene terephthalate) (PET) copolymers containing nitroterephthalic units was investigated. Random poly(ethylene terephthalate‐co‐nitroterephthalate) copolyesters (PETNT) containing 15 and 30 mol % nitrated units were prepared from ethylene glycol and a mixture of dimethyl terephthalate and dimethyl nitroterephthalate. A detailed study of the influence of the nitro group on the methanolytic degradation rate of the nitrated bis(2‐hydroxyethyl) nitroterephthalate (BHENT) model compound in comparison with the nonnitrated bis(2‐hydroxyethyl) terephthalate (BHET) model compound was carried out. The kinetics of the methanolysis of BHENT and BHET were evaluated with high‐performance liquid chromatography and 1H NMR spectroscopy. BHENT appeared to be much more reactive than BHET. The methanolytic degradation of PET and PETNT copolyesters at 80 °C was followed by changes in the weight and viscosity, gel permeation chromatography, differential scanning calorimetry, scanning electron microscopy, and 1H and 13C NMR spectroscopy. The copolyesters degraded faster than PET, and the degradation increased with the content of nitrated units and occurred preferentially by cleavage of the ester groups placed at the meta position of the nitro group in the nitrated units. For both PET and PETNT copolyesters, an increase in crystallinity accompanied methanolysis. A surface degradation mechanism entailing solubilization of the fragmented polymer and consequent loss of mass was found to operate in the methanolysis of the copolyesters. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2276–2285, 2002  相似文献   

2.
The microstructure and crystallization behavior of a set of poly(ethylene terephthalate‐co‐5‐nitroisophthalate) copolymers (PETNI) containing 5‐nitroisophthalic units in the 10–50 mol % range were examined and compared to those of poly(ethylene terephthalate) (PET) and poly(ethylene terephthalate‐co‐isophthalate) (PETI) copolymers. A 13C NMR analysis of PETNI copolymers in a trifluoroacetic acid solution indicates that they are random copolymers with average sequence lengths in accordance with ideal polycondensation statistics. Differential scanning calorimetry (DSC) studies show that PETNI containing 5‐nitroisophthalic units up to 20 mol % are able to crystallize and that crystallization takes place in these copolymers at much slower rates than in PET. Wide‐angle X‐ray diffraction from powder and fibers reveals that crystallizable PETNI adopts the same triclinic crystal structure as PET, with the nitroisophthalate units being excluded from crystallites. Fourier transform infrared in combination with cross‐polarization/magic‐angle spinning 13C NMR spectroscopy demonstrates the occurrence of a gauche–trans conversion encompassing the crystallization process. A correlation between DSC and spectroscopic data leads us to conclude that the content of trans conformer in the noncrystallized phase of PETNI is higher than in both PET and PETI copolymers and suggests that secondary crystallization in the homopolymer must proceed by a mechanism different than that in copolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1553–1564, 2001  相似文献   

3.
The melt crystallization behaviors and crystalline structures of poly(ethylene terephthalate) (PET), poly(trimethylene terephthalate), and poly(ethylene‐co‐trimethylene terephthalate) (PETT) were investigated with differential scanning calorimetry (DSC), polarized optical microscopy (POM), and X‐ray diffraction at various crystallization temperatures (Tcs). The PETT copolymers were synthesized via the polycondensation of terephthalate with ethylene glycol and trimethylene glycol (TG) in various compositions. The copolymers with 69.0 mol % or more TG or 31.0 mol % or less TG were crystallizable, but the other copolymers containing 34–56 mol % TG were amorphous. The DSC isothermal results revealed that the addition of a small amount of flexible TG (up to 21 mol %) to the PET structure slightly reduced the formation of three‐dimensional spherulites. A greater TG concentration (91–100%) in the copolyesters changed the crystal growth from two‐dimensional to three‐dimensional. The DSC heating scans after the completion of isothermal crystallization at various Tcs showed three melting endotherms for PET, PETT‐88, PETT‐84, and PETT‐79 and four melting endotherms for PETT‐9 and PETT. The presence of an additional melting endotherm could be attributed to the melting of thinner and imperfect copolyester crystallites. Analyses of the Lauritzen–Hoffman equation demonstrated that PETT‐88 had the highest values of the product of the lateral and folding surface free energies, and this suggested that the addition of small amounts of flexible trimethylene terephthalate segments to PET disturbed chain regularity, thus increasing molecular chain mobility. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4255–4271, 2004  相似文献   

4.
The methanolysis of poly(ethylene terephthalate) (PET) copolymers containing 5‐nitroisophthalic units was investigated. Random copolyesters containing 10 and 30 mol % of such units were prepared via a two‐step melt copolycondensation of bis(2‐hydroxyethyl) terephthalate (BHET) and bis(2‐hydroxyethyl) 5‐nitroisophthalate (BHENI) in the presence of tetrabutyl titanate as a catalyst. First, the susceptibility of these two comonomers toward methanolysis was evaluated, and their reaction rates were estimated with high‐performance liquid chromatography. BHENI appeared to be much more reactive than both BHET and bis(2‐hydroxyethyl) isophthalate. The methanolysis of PET and the copolyesters was carried out at 100 °C, and the degradation process was followed by changes in the weight and viscosity, gel permeation chromatography, differential scanning calorimetry, and 1H and 13C NMR spectroscopy. The copolyesters degraded faster than PET, and the rate of degradation increased with the content of nitrated units. The products resulting from methanolysis were concluded to be dimethyl terephthalate, dimethyl 5‐nitroisophthalate, ethylene glycol, and small, soluble oligomers. For both PET and the copolyesters, an increase in crystallinity was observed during the degradation process, indicating that methanolysis preferentially occurred in the amorphous phase. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 76–87, 2002  相似文献   

5.
The synthesis, microstructure, and thermal behavior of a series of poly(ethylene terephthalate) (PET) copolymers containing nitroterephthalic units are described. These novel copolyesters were synthesized by transesterification followed by melt copolycondensation of dimethyl terephthalate and dimethyl nitroterephthalate mixtures with ethylene glycol. The molar ratio of the two comonomers in the feed varied from 95/5 to 25/75. Furthermore, PET and poly(ethylene nitroterephthalate) homopolymers were synthesized with the same method and comparatively studied. Copolyester compositions were practically the same as in the feed, and weight‐average molecular weights ranged from 10,000 to 60,000. The two monomeric units were randomly distributed along the polymer chain, and the experimentally determined average sequence lengths were in accordance with ideal copolycondensation statistics. Melting temperatures and enthalpies of the copolyesters decreased with increasing content in nitroterephthalic units, and they all showed a single glass‐transition temperature superior to that of PET. They appeared to be stable up to 300 °C, and thermal degradation occurred in two well‐differentiated steps. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3761–3770, 2000  相似文献   

6.
To increase the Tg in combination with a retained crystallization rate, bis(2‐hydroxyethyl)terephthalate (BHET) was incorporated into poly(butylene terephthalate) (PBT) via solid‐state copolymerization (SSP). The incorporated BHET fraction depends on the miscibility of BHET in the amorphous phase of PBT prior to SSP. DSC measurements showed that BHET is only partially miscible. During SSP, the miscible BHET fraction reacts via transesterification reactions with the mobile amorphous PBT segments. The immiscible BHET fraction reacts by self‐condensation, resulting in the formation of poly(ethylene terephthalate) (PET) homopolymer. 1H‐NMR sequence distribution analysis showed that self‐condensation of BHET proceeded faster than the transesterification with PBT. SAXS measurements showed an increase in the long period with increasing fraction BHET present in the mixtures used for SSP followed by a decrease due to the formation of small PET crystals. DSC confirmed the presence of separate PET crystals. Furthermore, the incorporation of BHET via SSP resulted in PBT‐PET copolymers with an increased Tg compared to PBT. However, these copolymers showed a poorer crystallization behavior. The modified copolymer chain segments are apparently fully miscible with the unmodified PBT chains in the molten state. Consequently, the crystal growth process is retarded resulting in a decreased crystallization rate and crystallinity. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 882–899, 2007.  相似文献   

7.
Poly(ethylene terephthalate‐co‐isophthalate‐co‐5‐tert‐butylisophthalate) (PETItBI) terpolymers were investigated with reference to poly(ethylene terephthalate) (PET) homopolymer and poly(ethylene terephthalate‐co‐isophthalate) (PETI) copolymers. Three series of PETItBI terpolyesters, characterized by terephthalate contents of 90, 80, and 60 mol %, respectively, with different isophthalate/5‐tert‐butylisophthalate molar ratios, were prepared from ethylene glycol and mixtures of dimethyl terephthalate, dimethyl isophthalate, and 5‐tert‐butylisophthalic acid. The composition of the terpolymers and the composition of the feed agreed. All terpolymers had a random microstructure and number‐average molecular weights ranging from 10,000 to 20,000. The PETItBI terpolyesters displayed a higher glass‐transition temperature and a lower melting temperature than the PETI copolymers having the same content of terephthalic units. Thermal stability appeared essentially unchanged upon the incorporation of the 5‐tert‐butylisophthalic units. The PETItBIs were crystalline for terephthalate contents higher than 80 mol %, and they crystallized at lower rates than PETI. The crystal structure of the crystalline terpolymers was the same as that of PET with the 1,3‐phenylene units being excluded from the crystalline phase. Incorporation of isophthalate comonomers barely affected the tensile modulus and strength of PET, but the brittleness of the terpolymers decreased for higher contents in 5‐tert‐butylisophthalic units. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 124–134, 2003  相似文献   

8.
Copoly(ethylene terephthalate‐imide)s (PETIs) were synthesized by the melt copolycondensation of bis(2‐hydroxyethyl)terephthalate with a new imide monomer, N,N′‐bis[p‐(2‐hydroxyethoxycarbonyl)phenyl]‐biphenyl‐3,3′,4,4′‐tetracarboxydiimide (BHEI). The copolymers were characterized by intrinsic viscosity, Fourier transform infrared, 1H NMR, differential scanning calorimetry, and thermogravimetric analysis techniques. Although their crystallinities decreased as the content of BHEI units increased, the glass‐transition temperatures (Tg) increased significantly. When 5 or 10 mol % BHEI units were incorporated into poly(ethylene terephthalate), Tg increased by 10 or 24 °C, respectively. The thermal stabilities of PETI copolymers were about the same as the thermal stability of PET, whereas the weight loss of PETIs decreased as the content of BHEI units increased. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 408–415, 2001  相似文献   

9.
The isothermal crystallization kinetics of poly(ethylene oxide) (PEO) block in two poly(ethylene terephthalate) (PET)–PEO segmented copolymers was studied with differential scanning calorimetry. The Avrami equation failed to describe the overall crystallization process, but a modified Avrami equation, the Q equation, did. The crystallizability of the PET block and the different lengths of the PEO block exerted strong influences on the crystallization process, the crystallinity, and the final morphology of the PEO block. The mechanism of nucleation and the growth dimension of the PEO block were different because of the crystallizability of the PET block and the compositional heterogeneity. The crystallization of the PEO block was physically constrained by the microstructure of the PET crystalline phase, which resulted in a lower crystallization rate. However, this influence became weak with the increase in the soft‐block length. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3230–3238, 2000  相似文献   

10.
A method including cryogenic grinding, melt pressing from the molten state, and quenching was used to prepare blends of poly(ethylene terephthalate) (PET) and poly(ethylene naphthalene 2,6‐dicarboxylate) (PEN) in which the two phases were highly dispersed. The effect of melt‐pressing times on the thermal properties and relaxation behavior of PET/PEN films were characterized with differential scanning calorimetry and dielectric spectroscopy. For short melt‐pressing times, two glass‐transition, two crystallization, and two melting peaks were observed, indicating the presence of PET‐rich and PEN‐rich phases in these blends. Longer melt‐pressing times revealed a single glass transition and a single α‐relaxation process, showing that PET–PEN block copolymers were likely to be formed during the melt pressing. The experimental findings were examined in terms of the transesterification reactions between the blend components, as revealed by 1H NMR measurements. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2570–2578, 2002  相似文献   

11.
This study examined the oxygen‐transport properties of poly(ethylene terephthalate‐co‐bibenzoate) (PETBB55) crystallized from the melt (melt crystallization) or quenched to glass and subsequently isothermally crystallized by heating above the glass‐transition temperature (cold crystallization). The gauche–trans conformation of the glycol linkage was determined by infrared analysis, and the crystalline morphology was examined by atomic force microscopy. Oxygen solubility decreased linearly with volume fraction crystallinity. For melt‐crystallized PETBB55, extrapolation to zero solubility corresponded to an impermeable crystal with 100% trans glycol conformations, a density of 1.396 g cm?3, and a heat of melting of 83 J g?1. From the melt, PETBB55 crystallized as space‐filling spherulites with loosely organized lamellae and pronounced secondary crystallization. The morphological observations provided a structural model for permeability consisting of impermeable platelets randomly dispersed in a permeable matrix. In contrast, cold‐crystallized PETBB55 retained the granular texture of the quenched polymer despite the high level of crystallinity, as measured by the density and heat of melting. Oxygen solubility decreased linearly with volume fraction crystallinity, but zero solubility corresponded to an impermeable defective crystal with a trans fraction of 0.83 and a density of 1.381 g cm?3. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2489–2503, 2002  相似文献   

12.
The improvement in oxygen barrier properties of poly(ethylene terephthalate) (PET) by incorporation of an impermeable phase such as crystallinity or talc platelets was examined. Crystallinity was induced by crystallization from the glassy state (cold crystallization). Microlayering was used to create talc‐filled structures with controlled layer architecture. The reduction of permeability in crystallized and talc‐filled PET was well described by Nielsen's model. Changes in permeability of crystalline PET could not be ascribed to the filler effect of crystallites only. Our data on solubility, obtained on the basis of measurements of the oxygen transport coefficients, confirmed a previous finding that the amorphous phase density of PET decreases upon crystallization. The data were amenable to interpretation by free volume theory. Talc‐filled materials processed by different methods showed the same permeability; however, much better mechanical properties were achieved by microlayering. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 847–857, 1999  相似文献   

13.
The thermal behavior of poly(ethylene‐co‐2,2‐bis[4‐(ethylenoxy)‐1,4‐phenylene]propane terephthalate) (PET/BHEEBT) copolymers was investigated by thermogravimetric analysis and differential scanning calorimetry. A good thermal stability was found for all the samples. The thermal analysis carried out using DSC technique showed that the Tm of the copolymers decreased with increasing BHEEBT unit content, differently from Tg, which on the contrary increased. Wide‐angle X‐ray diffraction measurements permitted identifying the kind of crystalline structure of PET in all the semicrystalline samples. The multiple endotherms similar to PET were also evidenced in the PET/BHEEBT samples, due to melting and recrystallization processes. By applying the Hoffman–Weeks' method, the Tm° of PET and its copolymers was derived. The isothermal crystallization kinetics was analyzed according to Avrami's treatment and values of the exponent n close to 3 were obtained, independently of Tc and composition. Moreover, the introduction of BHEEBT units was found to decrease PET crystallization rate. Lastly, the presence of a crystal‐amorphous interphase was evidenced. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1441–1454, 2005  相似文献   

14.
A library of random poly(ethylene terephthalate) (PET), poly(trimethylene terephthalate) (PTT), and seven PET–PTT copolymers has been prepared in a high throughput manner by entropically‐driven ring‐opening polymerizations of the corresponding macrocyclic oligomers. The products have been investigated by differential scanning calorimetry and wide angle X‐ray diffraction. They show that the 50:50 copolymer displays a crystalline phase. The same phase can be formed by in situ transesterification when a 50:50 mixture of PET and PTT is melt blended. Poly(butylene terephthalate) (PBT)–PET and PTT–PBT 50:50 copolymers also show crystal phases. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
The lamellar‐level morphology of an extruded poly(ethylene terephthalate) (PET)/poly(ethylene‐2,6‐naphthalate) (PEN) blend was investigated with small‐angle X‐ray scattering (SAXS). Measurements were made as a function of the annealing time in the melt and the crystallization temperature. The characteristic morphological parameters at the lamellar level were determined by correlation function analysis of the SAXS data. At a low crystallization temperature of 120 °C, the increased amorphous layer thickness was identified in the blend, indicating that some PEN was incorporated into the interlamellar regions of PET during crystallization. The blend also showed a larger lamellar thickness than pure PET. A reason for the increase in the lamellar thickness might be that the formation of thinner lamellar stacks by secondary crystallization was significantly restricted because of the increased glass‐transition temperature. At high crystallization temperatures above 200 °C, the diffusion rates of noncrystallizable components were faster than the growth rates of crystals, with most of the noncrystallizable components escaping from the lamellar stacks. As a result, the blend showed an interfibrillar or interspherulitic morphology. © 2002 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 317–324, 2002  相似文献   

16.
Solvent transport in poly(ethylene terephthalate) (PET) and related phase transformation were investigated. The data of mass sorption were analyzed according to Harmon's model for Case I (Fickian), Case II (swelling), and anomalous transport. This transport process in PET is accompanied by the induced crystallization of the original amorphous state. The transformation was examined by wide‐angle X‐ray scattering, small‐angle X‐ray scattering, differential scanning calorimetry, and Fourier transform infrared spectroscopy. During this process, the matrix is under a strain state that causes different kinetic paths of crystallization as compared with that by thermal annealing. This state of strain assists the development of the solvent‐induced crystallization. The model regarding crystallization was proposed in terms of the study of long period L, the crystal thickness lc, and the thickness of amorphous layer la obtained from the one‐dimensional correlation function and interface distribution function. Different kinetic paths were discovered for different crystallization processes. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1444–1453, 2002  相似文献   

17.
Generalized two‐dimensional (2D) Fourier transform infrared correlation spectroscopy was used to investigate the effect of the comonomer compositions on the crystallization behavior of two types of biosynthesized random copolymers, poly(hydroxybutyrate‐co‐hydroxyhexanoate) and poly(hydroxybutyrate‐co‐hydroxyvalerate). The carbonyl absorption band around 1730 cm?1 was sensitive to the degree of crystallinity. 2D correlation analysis demonstrated that the 3‐hydroxyhexanoate units preferred to remain in the amorphous phase of the semicrystalline poly(hydroxybutyrate‐co‐hydroxyhexanoate) copolymer, resulting in decreases in the degree of crystallinity and the rate of the crystallization process. The poly(hydroxybutyrate‐co‐hydroxyvalerate) copolymer maintained a high degree of crystallinity when the 3‐hydroxyvalerate fraction was increased from 0 to 25 mol % because of isodimorphism. The crystalline and amorphous absorption bands for the carbonyl bond for this copolymer, therefore, changed simultaneously. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 649–656, 2002; DOI 10.1002/polb.10126  相似文献   

18.
Here, the confirmation of an oriented nanohybrid shish‐kebab (NHSK) crystalline structure in a series of composites of poly(ethylene terephthalate) (PET) and multiwall carbon nanotubes (MWCNTs) is reported. The combined use of small‐ and wide‐angle X‐ray scattering (SAXS/WAXS) and thermal analysis has been used to investigate the morphology development in PET‐MWCNT nanocomposites under hot isothermal crystallization conditions. The MWCNTs act as both heterogeneous nucleating agents and surfaces (oriented shish structures) for the epitaxial growth of PET crystallites (kebabs) giving an oriented crystalline morphology. In contrast, the PET homopolymer does not show any residual oriented crystalline morphology during isothermal crystallization but gave a sporadic nucleation of a classic unoriented lamellar structure with slower crystallization kinetics. The results provide a valuable insight into the role of MWCNTs as nanoparticulate fillers in the morphology development and subsequent modification of physical properties in engineering polymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 132–137  相似文献   

19.
Starting with 3,3′,4,4′‐biphenyltetracarboxylic dianhydride and methyl aminobenzoate, we synthesized a novel rodlike imide‐containing monomer, N,N′‐bis[p‐(methoxy carbonyl) phenyl]‐biphenyl‐3,3′,4,4′‐tetracarboxydiimide (BMBI). The polycondensation of BMBI with dimethyl terephthalate and ethylene glycol yielded a series of copoly(ester imide)s based on the BMBI‐modified poly(ethylene terephthalate) (PET) backbone. Compared with PET, these BMBI‐modified polyesters had higher glass‐transition temperatures and higher stiffness and strength. In particular, the poly(ethylene terephthalate imide) PETI‐5, which contained 5 mol % of the imide moieties, had a glass‐transition temperature of 89.9 °C (11 °C higher than the glass‐transition temperature of PET), a tensile modulus of 869.4 MPa (20.2 % higher than that of PET), and a tensile strength of 80.8 MPa (38.8 % higher than that of PET). Therefore, a significant reinforcing effect was observed in these imide‐modified polyesters, and a new approach to higher property polyesters was suggested. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 852–863, 2002; DOI 10.1002/pola.10169  相似文献   

20.
Melt crystallization behaviors of poly(ethylene terephthalate) (PET) and poly(ethylene terephthalate‐co‐isophthalate) (PETI) containing 2 and 12 mol % of noncrystallizable isophthalate components were investigated. Differential scanning calorimetry (DSC) isothermal results revealed that the introduction of 2 mol % isophthalate into PET caused a change of the crystal growth process from a two‐dimensional to a three‐dimensional spherulitic growth. The addition of more isophthalate up to 12 mol % into the PET structure induced a change in the crystal growth from a three‐dimensional to a two‐dimensional crystal growth. DSC heating scans after completion of isothermal crystallization at various Tc's showed three melting endotherms for PET and four melting endotherms for PETI‐2 and PETI‐12. The presence of an additional melting endotherm is attributed to the melting of copolyester crystallite composed of ethylene glycol, tere‐phthalate, and isophthalate (IPA) or the melting of molecular chains near IPA formed by melting the secondary crystallite Tm (I) and then recrystallizing during heating. Analyses of both Avrami and Lauritzen‐Hoffman equations revealed that PETI containing 2 mol % of isophthalate had the highest Avrami exponent n, growth rate constant Go, and product of lateral and end surface free energies σσe. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2515–2524, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号