首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Knoevenagel condensation of 5,6‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinoline‐1,2‐dione 3 with aryl cyanomethyl ketones 9 generates 3‐(aroyl(cyano)methylidene)oxindoles 10 that react with cyclic 1,3‐diketones 11 to generate polycyclic hemiacetal spiro[4H‐2,3‐dihydropyran‐3,3′‐oxindoles] 13 .  相似文献   

2.
The anellation of a 6‐membered ring to the 2,3‐position of corannulene (=dibenzo[ghi,mno]fluoranthene; 1 ) leads to curved aromatic compounds with a significantly higher bowl‐inversion barrier than corannulene (see Fig. 1). If the bridge is −CH2−NR−CH2−, a variety of linkers can be introduced at the N(2) atom, and the corresponding curved aromatics act as versatile building blocks for larger structures (see Scheme). The locked bowl, in combination with an amide bond (see 9 and 10 ), gives rise to corannulene derivatives with chiral ground‐state conformations, which possess the ability to adapt to their chiral environment by shifting their enantiomer equilibrium slightly in favor of one enantiomeric conformer. Rim annulation of corannulene seems to display a significantly lower electron‐withdrawing effect than facial anellation on [5,6]fullerene‐C60Ih, as determined by an investigation of the basicity at the N‐atom of CH2−NR−CH2 (see 4 vs. 15 in Fig. 2).  相似文献   

3.
The [3,3′(4H,4′H)‐bi‐2H‐1,3‐oxazine]‐4,4′‐diones 3a – 3i were obtained by [2+4] cycloaddition reactions of furan‐2,3‐diones 1a – 1c with aromatic aldazines 2a – 2d (Scheme 1). So, new derivatives of bi‐2H‐1,3‐oxazines and their hydrolysis products, 3,5‐diaryl‐1H‐pyrazoles 4a – 4c (Scheme 3), which are potential biologically active compounds, were synthesized for the first time.  相似文献   

4.
Derivatives of the hitherto unknown ring system, pyrazolo[4′,3′:5,6]pyrano[2,3‐b]quinoxalin‐4(1H)‐one, are synthesized in one step from the corresponding 1‐substuituted or 1,3‐disubstituted 2‐pyrazolin‐5‐ones and 3‐chloroquinoxaline‐2‐carbonyl chloride using calcium hydroxide in boiling 1,4‐dioxane. The parent system carrying no substituent in positions 1 and 3 is obtained upon treatment of the 1‐PMB (p‐methoxybenzyl) protected congener with trifluoroacetic acid. Detailed NMR spectroscopic investigations including unambiguous chemical shift assignments of all 1H, 13C, and 15N resonances of the obtained tetracycles are reported.  相似文献   

5.
Several new benzo[ij]pyrano[2,3‐b]quinolizine‐8‐ones 5 and 4H‐pyrano[2,3‐b]pyridine 8 derivatives were synthesized from 4‐hydroxyquinolines 1 . Reacting 3‐acetyl‐4‐hydroxy‐1‐phenyl‐1H‐quinoline‐2‐one with dimethylformamide dimethylacetal afforded 3‐(3‐Dimethylarnino‐acryloyl)‐4‐hydroxy‐1‐phenyl‐1H‐quinolin‐2‐one 9 . This reacted with hippuric acid and diethyl 3‐oxoglutarate to give 2H‐pyran‐2‐one 13 and pyranopyridoquinoline 17 respectively.  相似文献   

6.
The carbodiimides 5 , obtained from reactions of iminophosphorane 4 with aromatic isocyanates, reacted with amines, phenols or ROH to give 2‐substituted 5,6,7,8‐tetrahydropyrido[4′,3′:4,5]thieno[2,3‐d]‐pyrimidin‐4(3H)‐one 7 in the presence of catalytic amount of sodium alkoxide or solid potassium carbonate in satisfactory yields.  相似文献   

7.
The structure of the title compound, C7H6BNO3, a new boron heterocycle, prepared by the condensation of (2‐ethoxycarbonylphenyl)boronic acid and hydroxylamine, reveals the specific mode of intramolecular condensation between a phenylboronic acid and an ortho hydroxamic acid substituent. The crystal structure shows that dehydration occurs to form a planar oxazaborinine ring possessing both phenol‐like B—O—H and lactam functional groups. In the extended structure, intermolecular hydrogen bonding generates a 14‐membered ring. To our knowledge, this is the first crystal structure determination involving a six‐membered ring that exhibits consecutive B—OH, O, NH, and C=O functional groups.  相似文献   

8.
A facile, efficient, and novel approach to access 2‐substituted 2,3‐dihydro‐4(1H)‐azuleno[2,1‐d]pyrimidinones was developed by condensation of 2‐amino‐1‐carbamoyl‐3‐phenylazulene with ary1 aldehydes or ketones in ionic liquids by catalyzed p‐toluenesulfonic acid.  相似文献   

9.
The readily available title compounds 4a and 24 react with N-, O-, S-, and C-nucleophiles in presence of MnO2 to give the corresponding mono- or disubstituted 2H-azabenzimidazoles ( = azaisobenzimidazoles), e.g., 11–18 and 26a–h , respectively, or 2,3-dihydro-1H-azabenzimidazoles ( = dihydro-azabenzimidazoles) such as 9 and 10 and 27 and 28 , respectively, by a 1, 4- or 1,6-Michael addition (Schemes 2 and 4). The bromo-dihydro-1H-azabenzimidazole 4b lost the Br-atom when treated with piperidine or morpholine yielding the corresponding disubstituted 2H-azabenzimidazole 21 (Scheme 3). Reductive ring opening of the substituted spiro compounds leads to mono- and disubstituted diaminopyridines which are intermediates for fused pyridine ring systems with substituents often not available by conventional routes and of potential pharmaceutical interest (see 32 – 37 ). E.g., starting from 4a , a three-step synthesis of the analgesic flupirtine maleate (= ethyl {2-amino-6-[(4-fluorobenzyl)amino]pyridin-3-yl}carbamate maleate = Katadolon®; 39 ) and of its non-fluorinated derivative D-7195 is described. Its analogue 40 was similarly made from the spiro compound 24 .  相似文献   

10.
Three‐component reactions of 5,6‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinoline‐1,2‐dione with malononitrile, or ethyl cyanoacetate, and cyclic six‐membered or a five‐membered 1,3‐diketone, produce spiro[4H‐pyran‐3,3′‐oxindoles].  相似文献   

11.
Starting with 2-substituted quinoline-3,4-dicarboxylic acids, a series of substituted 1,2,3,4-tetrahydropyrimido[4,5-c]quinolinone-3-thiones were obtained. The latter compounds were converted to the three novel polyazasteroid series: 1,2,4-Triazolo[3′,4′:2,3]pyrimido[4,5-c]-quinolin-11(12H)ones, imidazo[2′,1′:2,3]pyrimido[4,5c]quinolin-11(12H)ones and 2,3-dihydroimidazo[2′,1′:2,3]pyrimido[4,5-c]quinolin-11(12H)ones. The intermediate 3-hydrazino-1,2-dihydropyrimido[4,5-c]quinolinones and nitrous acid gave the 3-azido derivatives rather than the tetrazolo compounds.  相似文献   

12.
We report the efficient preparation of furo[2,3‐d]pyridazin‐4(5H)‐one and its N‐substituted derivatives starting from methyl 2‐methylfuran‐3‐carboxylate. The Me group was converted to the aldehyde group, which was then condensed with hydrazine derivatives. Then, the ester functionalities were hydrolyzed to the corresponding acids, followed by treatment with SOCl2 to give N‐substituted furopyridazinone derivatives.  相似文献   

13.
The title compounds, C12H20N6O2, (I), and C5H9N3O2, (II), display the characteristic features of 1,2,4‐triazole derivatives. Compound (I) lies about an inversion centre which is at the mid‐point of the central C—C bond. Compound (II) also contains a planar 1,2,4‐triazole ring but differs from (I) in that it has a hydr­oxy group attached to the ring. Mol­ecules of (I) are held together in the crystal structure by inter­molecular N—H⋯O contacts and by weak π–π stacking inter­actions between the 1,2,4‐triazole moieties. Compound (II) contains inter­molecular O—H⋯O and N—H⋯O hydrogen bonds.  相似文献   

14.
The solvothermal reaction of Zn(OAc)2·2H2O with 3,3′‐(diazenediyl)dibenzoic acid (H2ADB) in H2O at 393 K afforded the title complex, [Zn(C14H8N2O4)(H2O)]n. The asymmetric unit contains half a ZnII cation, half an ADB ligand and half a water molecule. Each ZnII centre lies on a crystallographic twofold rotation axis and is five‐coordinated by four O atoms of bridging carboxylate groups from four ADB ligands and one O atom from a water molecule, forming a distorted trigonal–bipyramidal coordination geometry. The [Zn(H2O)] subunits are bridged by carboxylate groups to give one‐dimensional [Zn(μ‐COO)4(H2O)]n chains. The chains are linked by ADB ligands into two‐dimensional sheets, and these sheets are further connected to neighbouring sheets via hydrogen bonds (OW—HW...O), forming a three‐dimensional hydrogen‐bond‐stabilized structure with an unprecedented 374175262 topology.  相似文献   

15.
In the title compound, C18H13BrClNO3, the heterocyclic ring of the indole is distorted from planarity towards an envelope conformation. The orientations of the indole, oxetane, chloro and bromo­phenyl substituents are conditioned by the sp3 states of the spiro‐junction and the Cl‐attached C atoms.  相似文献   

16.
The reaction of 2-aminopyridine, o-phthaldehydic acid and potassium cyanide gave pyrido[2′,1′:2,3]imidazo[4,5-c]isoquinolin-5(6H)-one, which upon treatment with propargylbromide, yielded both O and N alkylated products. 2-Aminopyridine, o-phthaldehyde and potassium cyanide gave 1-cyano-2-(2-pyridyl)isoindole which rearranged in acid to give the previously unreported parent pyrido[2′,1′:2,3]imidazo[4,5-c]isoquinole. Structures were confirmed using uv, ir, nmr and x-ray spectroscopy.  相似文献   

17.
Reaction 6H‐pyrrolo[3,2,1‐de ]acridine‐1,2‐dione ( 7 ) with cyclic 1,3‐dicarbonyl compounds in the presence of malononitrile or ethyl cyanoacetate generates spiro[4H‐pyran‐3,3′‐oxindoles] 8 .  相似文献   

18.
The I2‐catalyzed preparation of spiro[1,3,4‐benzotriazepine‐2,3′‐indole]‐2′,5(1H,1′H)‐diones from 2‐aminobenzohydrazide and isatins in MeCN at room temperature in good‐to‐excellent yields is described. The structure of 3 was corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS data). A plausible mechanism for this type of reaction is proposed (Scheme 2).  相似文献   

19.
20.
Crystallization of the title compound, C8H8N4O2, results in the formation of one‐dimensional chains of imidazole (im) mol­ecules linked together by strong hydrogen bonds. The O⋯N(im) separation and O—H(⋯N) distance are 2.6906 (17) and 1.74 (2) Å, respectively, and the O—H⋯N angle is 173 (2)°. The one‐dimensional chains are weakly π stacked along the b axis, with centroid‐to‐centroid separations of 3.678 (2) Å between five‐ and six‐membered rings and 3.963 (2) Å between six‐membered rings. Each mol­ecule is arranged around an inversion center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号