首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The X‐ray crystal structure analyses of 3β‐hydroxy‐11‐oxo‐18α‐olean‐12‐en‐28‐oic acid methyl ester ethanol solvate, C31H48O4·C2H6O, (I), and 3,11‐dioxo‐18α‐olean‐12‐en‐28‐oic acid methyl ester, C31H46O4, (II), are described. These two compounds differ only in the structure of ring A. In (I), ring A has a chair conformation, while in (II), it has a twisted boat conformation. In both compounds, ring C has a slightly distorted sofa conformation, rings B, D and E are in chair conformations, and rings D and E are trans‐fused. The asymmetric unit of (I) contains one mol­ecule of ethanol linked by hydrogen bonds with two different mol­ecules of (I).  相似文献   

2.
In the title compound, C24H36O6, the ester linkage in ring A is equatorial. The six‐membered rings A, B and C have chair conformations. The five‐membered ring D adopts a 13β,14α‐half‐chair conformation and the E ring adopts an envelope conformation. The A/B, B/C and C/D ring junctions are trans, whereas the D/E junction is cis.  相似文献   

3.
The structures of methyl 3β‐acetoxy‐12‐oxo‐18β‐olean‐28‐oate [C33H52O5, (I)] and methyl 3β‐acetoxy‐12,19‐dioxoolean‐9(11),13(18)‐dien‐28‐oate [C33H46O6, (II)] are described. In (I), all rings are in the chair conformation, rings D and E are cis and the other rings trans‐fused. In compound (II), only rings A and E are in the chair conformation, ring B has a distorted chair conformation, ring C a distorted half‐boat and ring D an insignificantly distorted half‐chair conformation.  相似文献   

4.
In the title compound, C29H42O4·H2O, cyclo­hexane rings A and B are in the sofa conformation, ring C is in a chair conformation and the five‐membered ring D is in an envelope conformation. The structure is stabilized by inter‐ and intramolecular C—H?O and O—H?O hydrogen bonds.  相似文献   

5.
In the title compounds, C23H33NO3 and C21H30O3, respectively, the ester linkage in ring A is equatorial. In these steroids, the six‐membered rings A and B have chair conformations, but ring C can be better described as a half‐chair. The five‐membered ring D adopts a 14α‐envelop conformation. The A/B, B/C and C/D ring junctions are trans.  相似文献   

6.
In the title compound, C23H34O4, which is an intermediate in the synthesis of pregnane derivatives with a modified skeleton that show potent abortion‐inducing activity, the conformation of ring B is close to half‐chair due to the presence of both the C=C double bond and the axial 5β‐methyl group. Rings A and C have conformations close to chair, while ring D has a twisted conformation around the bridgehead C—C bond. Molecules are hydrogen bonded via the hydroxyl and acetoxy groups into infinite chains. Quantum‐mechanical ab initio Roothan Hartree–Fock calculations show that crystal packing might be responsible for the low values of the angles between rings A and B, and between ring A and rings C and D, as well as for a different steric position of the methyl ketone side chain compared to the geometry of the free molecule.  相似文献   

7.
The title compound, C36H49NO5·H2O, has the outer two six‐membered rings of the steroid nucleus in chair conformations. The central ring B of the steroid nucleus is in an 8β,9α‐half‐chair conformation, while ring D of the steroid adopts a slightly distorted 13β,14α‐half‐chair conformation. The piperidine ring is in a chair conformation. The methoxy­benzyl­idene moiety has an E configuration with respect to the carbonyl group at position 17. Intermolecular O—H?O and O—H?N hydrogen bonds link the steroid and water mol­ecules into chains which run parallel to the b axis.  相似文献   

8.
The title solvate of the steroid 17β‐estradiol (E2) with methanol and water, C18H24O2·0.67CH4O·0.33H2O, is the first E2 derivative to contain three crystallographically independent mol­ecules in the asymmetric unit. The three steroid mol­ecules, along with two methanol mol­ecules and a water mol­ecule, create a three‐dimensional hydrogen‐bonded system. Three‐sided columns are formed, with the estradiol mol­ecules aligned lengthwise parallel to (101), and joined by solvent mol­ecules at both hydro­philic ends. The three estradiol mol­ecules differ slightly in their ring‐bowing angles, i.e. the angle between the mean plane of the A ring and that of the BCD ring; this angle ranges from 7.1 to 12.2°.  相似文献   

9.
In the title compound, 4‐(3β‐hydroxy‐17‐oxoandrost‐5‐en‐16‐ylidenemethyl)benzonitrile, C27H31NO2, rings A and C of the steroid nucleus are in chair conformations. The central six‐membered ring B is in an 8β,9α‐half‐chair conformation, while the five‐membered ring D adopts a 13β,14α‐half‐chair conformation. The cyano­benzyl­idene moiety has an E configuration with respect to the carbonyl group at position C17. The dihedral angle between the planes of the steroid nucleus and the cyano­benzyl­idene moiety is 22.61 (15)°. Intermolecular O—H⃛N hydrogen bonds formed between the hydroxyl group of the steroid and the N atom of the cyano­benzyl­idene moiety of symmetry‐related mol­ecules link the steroid mol­ecules into chains which run parallel to the b axis.  相似文献   

10.
The title compound, C22H28O5, is a commercial therapeutic agent of the steroid class. Both independent mol­ecules in the asymmetric unit have six‐membered A rings that are planar, while the B and C rings adopt normal chair conformations. The five‐membered D ring is in a 13β,14α‐half‐chair con­formation, and the B/C and C/D ring junctions are in trans positions. Cohesion in the crystal is provided by O—H⃛O hydrogen bonds, which generate chains of mol­ecules that are organized in a plane that lies along the crystallographic b axis.  相似文献   

11.
The title compound, C32H45N2O+·Br?·0.5H2O, has the outer two six‐membered rings in chair conformations, while the central ring is in an 8β,9α‐half‐chair conformation. The five‐mem­bered ring of the steroid nucleus adopts a slightly deformed 14α‐envelope conformation. The pyridyl­methyl­ene moiety has an E configuration with respect to the hydroxyl group at position 17. The structure is stabilized by a network of O—H?Br‐type intermolecular hydrogen bonds.  相似文献   

12.
The structures of orthorhombic (E)‐4‐(2‐{[amino(iminio)methyl]amino}vinyl)‐3,5‐dichlorophenolate dihydrate, C8H8Cl2N4O·2H2O, (I), triclinic (E)‐4‐(2‐{[amino(iminio)methyl]amino}vinyl)‐3,5‐dichlorophenolate methanol disolvate, C8H8Cl2N4O·2CH4O, (II), and orthorhombic (E)‐amino[(2,6‐dichloro‐4‐hydroxystyryl)amino]methaniminium acetate, C8H9Cl2N4O+·C2H3O2, (III), all crystallize with one formula unit in the asymmetric unit, with the molecule in an E configuration and the phenol H atom transferred to the guanidine N atom. Although the molecules of the title compounds form extended chains via hydrogen bonding in all three forms, owing to the presence of different solvent molecules, those chains are connected differently in the individual forms. In (II), the molecules are all coplanar, while in (I) and (III), adjacent molecules are tilted relative to one another to varying degrees. Also, because of the variation in hydrogen‐bond‐formation ability of the solvents, the hydrogen‐bonding arrangements vary in the three forms.  相似文献   

13.
Crystals of 5‐chloropyridin‐2‐amine–(2E)‐but‐2‐enedioate (2/1), 2C5H5ClN2·C4H4O4, (I), and 2‐aminopyridinium dl ‐3‐carboxy‐2‐hydroxypropanoate, C5H7N2+·C4H5O5, (II), are built from the neutral 5‐chloropyridin‐2‐amine molecule and fumaric acid in the case of (I) and from ring‐N‐protonated 2‐aminopyridinium cations and malate anions in (II). The fumaric acid molecule lies on an inversion centre. In (I), the neutral 5‐chloropyridin‐2‐amine and fumaric acid molecules interact via hydrogen bonds, forming two‐dimensional layers parallel to the (100) plane, whereas in (II), oppositely charged units interact via ionic and hydrogen bonds, forming a three‐dimensional network.  相似文献   

14.
The solid‐state structures of three push–pull acceptor‐π‐donor (A‐π‐D) systems differing only in the nature of the π‐spacer have been determined. (E)‐1‐Nitro‐4‐[2‐(3,4,5‐trimethoxyphenyl)ethenyl]benzene, C17H17NO5, (I), and its `bridge‐flipped' imine analogues, (E)‐3,4,5‐trimethoxy‐N‐(4‐nitrobenzylidene)aniline, C16H16N2O5, (II), and (E)‐4‐nitro‐N‐(3,4,5‐trimethoxybenzylidene)aniline, C16H16N2O5, (III), display different kinds of supramolecular networks, viz. corrugated planes, a herringbone pattern and a layered structure, respectively, all with zero overall dipole moments. Only (III) crystallizes in a noncentrosymmetric space group (P212121) and is, therefore, a potential material for second‐harmonic generation (SHG).  相似文献   

15.
The crystal structure of the title compound, C32H24O4, contains three fused di­hydro­pyran rings (A, B and C); ring A is fused with a benzene ring while the other two rings, B and C, are fused with naphthalene rings. Ring A adopts a half‐chair conformation with an equatorial methoxy group, whereas ring B assumes a distorted half‐chair conformation, the A/B ring junction being trans. Ring C adopts a distorted half‐boat conformation and is nearly orthogonal to ring B. Ring C is inclined to the best plane of ring A at an angle of 112.1 (1)°.  相似文献   

16.
The title compound, 9(R)‐[6(R)‐hydroxy­methyl‐1‐oxa‐4‐thia­cyclo­hexan‐2‐yl]‐1,9‐di­hydro‐6H‐purin‐6‐one–water (4/3), C10H12N4O3S·0.75H2O, crystallizes in the triclinic space group P1 with four mol­ecules in the asymmetric unit and 0.75 waters of hydration per mol­ecule. The structure was refined to an R value of 0.072 for 3382 observed reflections. The four crystallographically independent mol­ecules are designated A, B, C and D. All four oxa­thia­ne rings adopt the chair conformation and the purine bases are in an anti orientation with respect to the sugar moieties. Molecules A and D and mol­ecules C and B are base paired by a single hydrogen bond of the type N—H?N. These base pairs are again hydrogen bonded to their translated pairs in the direction of a cell diagonal.  相似文献   

17.
This analysis establishes the rotameric orientation of the pyridyl‐ring N atom of the title compound, C17H21N3O4·0.5C6H6, as antiperiplanar (ap) to the 1,4‐dihydropyridine H‐4, the absence of an intramolecular hydrogen bond between the 1,4‐dihydropyridine NH and the pyridyl‐N atom, and the unusual planarity of the 1,4‐dihydropyridine ring.  相似文献   

18.
In the title compound, C24H31NO2, ring B adopts a conformation between the boat and twisted‐boat forms. This conformation best accommodates adverse intramolecular H⋯H interactions between the H atoms of the 7β‐substituent and the two nearest ring H atoms. The tilt angle between rings A and D is 28.6 (1)°.  相似文献   

19.
The title compound, C25H31NO2·H2O, has the outer two six‐membered rings in chair conformations, while the central ring is in an 8β,9α‐half‐chair conformation. The five‐membered ring adopts a 13,14‐half‐chair conformation. The pyridyl­methyl­ene moiety has an E configuration with respect to the carbonyl group at position 17. The structure is stabilized by intermolecular O—H?N and O—H?O hydrogen bonds.  相似文献   

20.
The title compounds, C22H22N4 and C24H26N4O2 [alternative names: 2,6‐dibenzyl‐2,3,6,7‐tetrahydro‐1H,5H‐dipyrrolo[3,4‐b; 3′,4′‐e]pyrazine and 2,6‐bis(4‐methoxybenzyl)‐2,3,6,7‐tetrahydro‐1H,5H‐dipyrolo[3,4‐b;3′,4′‐e]pyrazine], two 1,2,3,5,6,7‐hexa­hydro‐2,4,6,8‐tetra­aza‐s‐indacene derivatives, are both centrosymmetric and have similar S‐shaped structures. In the former, there are two independent mol­ecules (A and B), both of which possess Ci symmetry. These two mol­ecules are arranged such that the benzene ring substituent of mol­ecule B is directed towards the plane of the benzene ring substituent of mol­ecule A, with a dihedral angle of 55.4 (2)° between their planes. The shortest C—H⋯C distance is, however, only 3.21 (1) Å. In both compounds, the benzene ring substituents are almost perpendicular to the plane of the central pyrazine ring, and the pyrrolidine rings have perfect envelope conformations. In the crystal structures of both compounds, the mol­ecules pack in a herring‐bone arrangement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号