首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of two different species of layered silicates on the morphology, mechanical properties, and methanol vapor barrier properties of polyamide‐6 (PA6) nanocomposites was examined using identical experimental conditions for both species. The layered silicate species used were natural montmorillonite (MMT) and synthetic expandable fluoro‐mica (FM), the chemical compositions of which were Na0.43(Al1.56Mg0.31Fe2+ 0.09)(Si3.95Al0.05)O10(OH)2 and Na0.66Mg2.68(Si3.98Al0.02)O10F2, respectively. The layered silicates were modified with a dodecylammonium salt (DDA) using an ion‐exchange method. The resulting organically modified layered silicates were melt‐kneaded with PA6 in a twin‐screw kneader at 260 °C. By quantitative analysis of the silicate layers dispersed in the PA6, the number‐average aspect ratio was estimated to be 76 for DDAMMT‐PA6 and 85 for DDAFM‐PA6. This confirmed that the primary particle size of the initial silicate did affect the aspect ratio. The rigidity and gas barrier properties of the nanocomposites appeared to depend upon the morphology of the nanocomposite. On the other hand, the elongation at break of the nanocomposites decreased as the amount of silicate increased. This reduction in ductility was ascribed to the difference in morphology of the nanocomposites, that is, distribution of silicate nanolayers in the polymer matrix. The homogeneity of the particle fraction of exfoliated nanolayers was clearly an important factor affecting the properties of the nanocomposites. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 583–595, 2009  相似文献   

2.
Structure‐property relationships in exfoliated polyisoprene (PI)/clay nanocomposites have been studied as a function of the clay concentration with rheometry, X‐ray diffraction, small‐angle X‐ray scattering, and transmission electron microscopy. The results presented here indicate that the interlayer spacing of layered silicates increases from 2 to at least approximately 14 nm because of the penetration of polymer molecules into the spacing between the silicate layers. The average aspect ratio (width/thickness) of the dispersed nanoplates is also estimated to be at least approximately 80. Additionally, the storage modulus of the nanocomposite exhibits frequency‐independent pseudo‐solidlike behavior above the percolation threshold [volume fraction of clay at the percolation threshold (?p) = 0.02] and shows large enhancements (up to approximately six orders of magnitude) in comparison with the storage modulus of PI when the volume fraction of clay (?) is greater than ?p. For the shear‐aligned PI/clay nanocomposites, an increase in the storage modulus with shear alignment is observed at ? < ?p, whereas a decrease in the storage modulus is observed for ? > ?p. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1000–1009, 2004  相似文献   

3.
Poly(ε-caprolactone) (PCL) masterbatches with the intercalated and the exfoliated morphology were prepared by ring opening polymerization of ε-caprolactone in the presence of organomodified montmorillonite (MMT) Cloisite 30B. Poly(l-lactide) (PLLA) nanocomposites with Cloisite 30B or PCL masterbatches were prepared by melt blending. The effects of the silicate type, MMT content and the nanocomposite morphology on thermal and mechanical properties of PLLA nanocomposites were examined. The montmorillonite particles in PLLA/Cloisite 30B and PLLA/intercalated masterbatch nanocomposites were intercalated. In contrary to expectations, the exfoliated silicate layers of exfoliated masterbatch were not transferred into the PLLA matrix. Due to a low miscibility of PCL and PLLA, MMT remained in the phase-separated masterbatch domains. The stress-strain characteristics of PLLA nanocomposites, Young modulus E, yield stress σy and yield strain εy, decreased with increasing MMT concentration, which is associated with the increase in PCL content. The expected stiffening effect of MMT was low due to a low aspect ratio of its particles and was obscured by both plastifying effects of PCL and low PLLA crystallinity. Interestingly, in contrast to the neat PLLA, ductility was enhanced in all PLLA/Cloisite 30B materials and in PLLA/masterbatch nanocomposites with low MMT concentrations.  相似文献   

4.
X‐ray diffraction methods were used in an investigation of the structural changes in syndiotactic polystyrene (sPS)/clay nanocomposites. sPS/clay was prepared by the intercalation of sPS polymer into layered montmorillonite. Both X‐ray diffraction data and transmission electron microscopy micrographs of sPS/clay nanocomposites indicated that most of the swellable silicate layers were exfoliated and randomly dispersed in the sPS matrix. The X‐ray diffraction data also showed the presence of polymorphism in the sPS/clay nanocomposites. This polymorphic behavior was strongly dependent on the thermal history of the sPS/clay nanocomposites from the melt and on the content of clay in the sPS/clay nanocomposites. Quenching from the melt induced crystallization into the α‐crystalline form, and the addition of montmorillonite probably increased heterophase nucleation of the α‐crystalline form. The effect of the melt crystallization of sPS and sPS/clay nanocomposites at different temperatures on the crystalline phases was also examined. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 736–746, 2002  相似文献   

5.
We synthesized organosoluble, thermoplastic elastomer/clay nanocomposites by making a jelly like solution of ethylene vinyl acetate containing 28% vinyl acetate (EVA‐28) and blending it with organomodified montmorillonite. Sodium montmorillonite (Na+‐MMT) was made organophilic by the intercalation of dodecyl ammonium ions. X‐ray diffraction patterns of Na+‐MMT and its corresponding organomodified dodecyl ammonium ion intercalated montmorillonite (12Me‐MMT) showed an increase in the interlayer spacing from 11.94 to 15.78 Å. However, X‐ray diffraction patterns of the thermoplastic elastomer and its hybrids with organomodified clay contents up to 6 wt % exhibited the disappearance of basal reflection peaks within an angle range of 3–10°, supporting the formation of a delaminated configuration. A hybrid containing 8 wt % 12Me‐MMT revealed a small hump within an angle range of 5–6° because of the aggregation of silicate layers in the EVA‐28 matrix. A transmission electron microscopy image of the same hybrid showed 3–5‐nm 12Me‐MMT particles dispersed in the thermoplastic elastomer matrix; that is, it led to the formation of nanocomposites or molecular‐level composites with a delaminated configuration. The formation of nanocomposites was reflected through the unexpected improvement of thermal and mechanical properties; for example, the tensile strength of a nanocomposite containing only 4 wt % organophilic clay was doubled in comparison with that of pure EVA‐28, and the thermal stability of the same nanocomposite was higher by about 34 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2065–2072, 2002  相似文献   

6.
The crystalline‐phase transition in polyamide‐66/montmorillonite nanocomposites before melting was investigated by in situ X‐ray diffraction and is reported for the first time in this work. The phase‐transition temperature in the nanocomposites was 170 °C, 20 °C lower than that in polyamide‐66. The lower phase‐transition temperature of the nanocomposites could be attributed to the γ‐phase‐favorable environment caused by silicate layers. Meanwhile, the addition of silicate layers changed the crystal structure of the polyamide‐66 matrix and influenced the phase‐transition behavior. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 63–67, 2003  相似文献   

7.
Transparent poly(ethyl acrylate) (PEA)/bentonite nanocomposites containing intercalated–exfoliated combinatory structures of clay were synthesized by in situ emulsion polymerizations in aqueous dispersions containing bentonite. The samples for characterization were prepared through direct‐forming films of the resulting emulsions without coagulation and separation. An examination with X‐ray diffraction and transmission electron microscopy showed that intercalated and exfoliated structures of clay coexisted in the PEA/bentonite nanocomposites. The measurements of mechanical properties showed that PEA properties were greatly improved, with the tensile strength and modulus increasing from 0.65 and 0.24 to 11.16 and 88.41 MPa, respectively. Dynamic mechanical analysis revealed a very marked improvement of the storage modulus above the glass‐transition temperature. In addition, because of the uniform dispersion of silicate layers in the PEA matrix, the barrier properties of the materials were dramatically improved. The permeability coefficient of water vapor decreased from 30.8 × 10?6 to 8.3 × 10?6 g cm/cm2 s cmHg. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1706–1711, 2002  相似文献   

8.
The feasibility of constructing polymer/clay nanocomposites with polypeptides as the matrix material is shown. Cationic poly‐L‐lysine · HBr (PLL) was reinforced by sodium montmorillonite clay. The PLL/clay nanocomposites were made via the solution‐intercalation film‐casting technique. X‐ray diffraction and transmission electron microscopy data indicated that montmorillonite layers intercalated with PLL chains coexist with exfoliated layers over a wide range of relative PLL/clay compositions. Differential scanning calorimetry suggests that the presence of clay suppresses crystal formation in PLL relative to the neat polypeptide and slightly decreases the PLL melting temperature. Despite lower crystallinity, dynamic mechanical analysis revealed a significant increase in the storage modulus of PLL with an increase in clay loading producing storage modulus magnitudes on par with traditional engineering thermoplastics. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2579–2586, 2002  相似文献   

9.
Intercalated and exfoliated nanocomposites were prepared by extrusion and injection of polyamide‐6 and highly swollen or slightly swollen montmorillonite, respectively. The microstructure of the nanocomposites has been studied previously. In this article, we investigated the influence of the preferential orientation of the montmorillonite sheets on the mechanical properties of the nanocomposites. Dynamic mechanical analysis and tensile tests showed that the elastic modulus depends mainly on the filler loading. A parallel coupling could well account for the behavior of the nanocomposites. The calculated elastic and storage moduli of montmorillonite were set to 140 and 40 GPa, respectively. Compression tests were performed to study the anisotropy of the mechanical properties. The elastic modulus and flow strain were sensitive to the filler orientation. A Tandon–Weng approach was applied to consider the geometry of the filler. In all low‐deformation tests, no significant difference between intercalated and exfoliated systems was observed. Finally, the influence of the dispersion and exfoliation state of the filler on the ultimate properties of the nanocomposites (tensile tests) is discussed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 272–283, 2002  相似文献   

10.
The solid‐state viscoelastic properties are examined for intercalated nanocomposites based on a copolyester and (2‐ethyl‐hexyl)dimethyl hydrogenated‐tallow ammonium montmorillonite. The nanocomposites are prepared via the direct melt intercalation technique using a conventional twin‐screw extruder. Dynamic mechanical thermal analysis of the nanocomposites is conducted using two different test setups. The dynamic mechanical relaxation spectra show an increase in the storage modulus of the nanocomposite over the entire temperature range under study as compared to the pristine polymer (except in the transition region from 70 to 80 °C). These results are analyzed using the empirical Havriliak–Negami (HN) equation. The four temperature independent HN parameters (α, β, E0, and E) and one temperature dependent parameter (τ, the relaxation time) are determined by solving the HN equation for each temperature over the range of temperatures. The calculated moduli results fit well with the experimental values of the relaxation spectra for the nanocomposites. This study shows that the HN model can be applied to polymer layered silicate nanocomposites, and it can be used to predict their dynamic mechanical properties over a wide range of temperatures and frequencies a priori. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2657–2666, 2004  相似文献   

11.
The melt‐state viscoelastic properties of nanocomposites prepared with a symmetrical polystyrene–polyisoprene block copolymer and organically modified layered silicates are examined. Nanocomposites based on three thermodynamically equivalent organically modified layered silicates, primarily differing in lateral disk diameter (d), are studied with small‐amplitude oscillatory shear. The effects of the domain structure of the ordered block copolymer and the mesoscale dispersion of the layered silicates on the rheological properties are examined via a comparison of data for the nanocomposites in the ordered and disordered states of the block copolymer. Hybrids prepared with 5 wt % organically modified fluorohectorite (d ~ 10 μm) and montmorillonite (d ~ 1 μm) demonstrate a notable decrease in the frequency dependence of the moduli at low frequencies and a significant enhancement in the complex viscosity at low frequencies in the disordered state. This behavior is understood in terms of the development of a percolated layered‐silicate network structure. However, the viscoelastic properties in the disordered state with 5 wt % organically modified laponite (d ~ 30 nm) and in the ordered state of the block copolymer for all layered silicates demonstrate only minor changes from those observed for the unfilled polymer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1434–1443, 2002  相似文献   

12.
Bismaleimide‐modified novolak resin/silsesquioxane (BMI‐PN/SiO3/2) nanocomposites were prepared by the sol–gel process. The reactions in the sol–gel synthesis were characterized by Fourier transform infrared spectroscopy. It was found by field emission scanning electron microscopy and atomic force microscopy studies that the particle size of the dispersed phase was about 100 nm, and there existed particle aggregates. The proportion of bismaleimide in the BMI‐PN/SiO3/2 nanocomposites showed an important effect on the thermal properties of the composites, as demonstrated by thermogravimetric analysis and dynamical mechanical analysis. Major improvements in the glass‐transition temperature and the heat resistance of the material were achieved by the introduction of the nanosized SiO3/2 inorganic phase, and the modulus at high temperatures was improved too. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2599–2606, 2003  相似文献   

13.
Polypropylene (PP) nanocomposites were prepared using montmorillonite with different organic modifiers, and the effect of processing aid (EMCA and PPG) on the dispersion of the nanofillers in the PP matrix was evaluated by WAXD, TEM, DSC, TGA, DMA, and mechanical tests. The present study helps to clarify the effects of the organic modifiers of clays on the intercalation and exfoliation processes. Nanocomposites of intercalated and partially exfoliated morphology were obtained, mainly when a low amount (1:1) of PP-g-MA/MMT was used. The results of the tests on mechanical properties showed that the clays with larger d001 (C-15A and Nanofil 5) using PPG presented a more considerable gain in impact strength. The nanocomposites using clays with smaller d001(C-20A) presented larger modulus when compared with those of pristine PP. The heat deflection temperature, crystallization temperature, and thermal stability of the nanocomposites were improved compared to neat PP. The DMA results showed that the organoclay improved the modulus of PP, but decreased the Tg. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2519–2531, 2008  相似文献   

14.
The structural characterization and transport properties of blends of a commercial high molecular weight poly(?‐caprolactone) with different amounts of a montmorillonite‐poly(?‐caprolactone) nanocomposite containing 30 wt % clay were studied. Two different vapors were used for the sorption and diffusion analysis—water as a hydrophilic permeant and dichloromethane as anorganic permeant—in the range of vapor activity between 0.2 and 0.8. The blends showed improved mechanical properties in terms of flexibility and drawability as compared with the starting nanocomposites. The permeability (P), calculated as the product of the sorption (S) and the zero‐concentration diffusion coefficient (D0), showed a strong dependence on the clay content in the blends. It greatly decreased on increasing the montmorillonite content for both vapors. This behavior was largely dominated by the diffusion parameters. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1118–1124, 2002  相似文献   

15.
In this work, poly(ethylene terephthalate)/organically modified montmorillonite (PET/o‐MMT) nanocomposites were prepared via direct melt compounding in a twin‐screw extruder. The main objective was to study the effects of using a polyester ionomer (PETi) as a compatibilizer to promote the intercalation and/or exfoliation of the o‐MMT in the PET. The o‐MMT content was 0, 1, 3, or 5 wt % and the PETi/o‐MMT mass ratio was 0/1, 1/1, or 3/1. The PETi was efficient to promote the intercalation/exfoliation of the o‐MMT in the PET matrix, as revealed by wide angle X‐ray scattering and transmission electron microscopy. Rheological characterization showed that the PET/o‐MMT nanocomposites exhibited a higher complex viscosity at low frequencies than PET, which is characteristic of materials presenting yield strength. Moreover, the higher the content and/or the degree of intercalation/exfoliation of the o‐MMT, the more the nanocomposite behaved like a solid because of a percolated structure formed by the o‐MMT layers, and the more the storage and loss modulus, G′ and G″, became independent of the frequency at low frequencies. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3084–3091, 2007  相似文献   

16.
The study describes the effect of the layered silicate content and its dispersion on the mechanical behavior of poly(ε-caprolactone) (PCL) nanocomposites and their corresponding changes during the degradation in a phosphate buffer at 37 °C. Two nanocomposite systems were compared: intercalated and exfoliated nanocomposites. They were prepared by melt-compounding of a high-molecular-weight PCL with in situ polymerized silicate masterbatches or an organophilized montmorillonite. It has been shown that Young modulus increases with the increasing silicate content and at the same time, the highest increase in the modulus is observed for the exfoliated system. The stiffness enhancement is predominantly caused by the dispersed inorganic phase but also supported by the contribution of the low-molecular-weight PCL fraction, which comes from the masterbatch, to the total degree of crystallinity. In contrast, the increase in the yield stress is driven mainly by the present low-molecular-weight PCL fraction with higher crystallinity. The degradation behavior reflects both the presence of the layered silicate as well as the low-molecular-weight PCL fraction. Their presence accelerates the degradation in the phosphate buffer at 37 °C.  相似文献   

17.
The thermal behaviors of poly (ethylene terephthalate) (PET)/SiO2 nanocomposites prepared by cryomilling were studied, by comparing with the cryomilled PET and the raw PET. Cryomilling induced amorphization of crystalline PET matrix and the decrease of PET molecular weight. Cryomilled PET/SiO2 nanocomposites have two abnormal phenomena in the DSC 1st heating thermogram due to the stored energy induced by cryomilling. During DSC cooling process, the dispersed nanometer SiO2 particles play a role of nucleating agent in PET matrix, and the hot crystallization ability of PET/SiO2 nanocomposites improves a lot. Besides, the heat stability of cryomilled PET/SiO2 nanocomposites improves more much during reheating. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1351–1356, 2006  相似文献   

18.
The properties of polyurethane (PU) nanocomposites with three different organoclays were compared in terms of their thermal stabilities, mechanical properties, morphologies, and gas permeabilities. Hexadecylamine–montmorillonite, dodecyltrimethyl ammonium–montmorillonite, and Cloisite 25A were used as organoclays for making PU hybrid films. The properties were examined as a function of the organoclay content in a matrix polymer. Transmission electron microscopy photographs showed that most clay layers were dispersed homogeneously into the matrix polymer on the nanoscale, although some particles of clay were agglomerated. Moreover, the addition of only a small amount of organoclay was enough to improve the thermal stabilities and mechanical properties of PU hybrid films, whereas gas permeability was reduced. Even polymers with low organoclay contents (3–4 wt %) showed much higher strength and modulus values than pure PU. Gas permeability was reduced linearly with an increasing amount of organoclay in the PU matrix. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 670–677, 2002; DOI 10.1002/polb.10124  相似文献   

19.
This paper reported an inorganic route that uses potassium silicate, which is one type of alkali silicate as an inorganic modifier, taking advantage of its instability and water condensation to decorate graphene oxide (GO) with nano‐SiO2. The ingredients of prepared nanocomposites were characterized by Fourier‐transform infrared spectroscopy (FT‐IR) and X‐ray photoelectron spectroscopy (XPS), and the thermodynamic property was tested by thermal gravimetric analysis (TGA). Scanning electron microscopy (SEM) was used to observe the morphology of SiO2‐GO nanocomposites. All the analyses above revealed the nano‐SiO2 (<100 nm) was deposited on the surface of GO by chemical bonds. In the meantime, the dispersion test illustrated that nano‐SiO2 played an important role in improving the dispersity of GO. The effect of SiO2‐GO nanocomposites on barrier and corrosion protection performance of SiO2‐GO nanocomposites was tested by immersion experiment and electrochemical impedance spectroscopy (EIS). The results indicated that GO was helped to block the corrosion of aggressive medium; moreover, SiO2‐GO nanocomposites had the best anticorrosion performance and the slowest rate of corrosion because of its good dispersity with waterborne epoxy coatings.  相似文献   

20.
A novel amorphous polyamide/montmorillonite nanocomposite based on poly(hexamethylene isophthalamide) was successfully prepared by melt intercalation. Wide angle X-ray diffraction and transmission electron microscopy showed that organoclay containing quaternary amine surfactants with phenyl and hydroxyl groups was delaminated in the polymer matrix resulting in well-exfoliated morphologies even at high montmorillonite content. Differential scanning calorimetry results indicated that clay platelets did not induce the formation of a crystalline phase in this amorphous polymer. Tensile tests demonstrated that the addition of nanoclay caused a dramatic increase in Young's modulus (almost twofold) and yield strength of the nanocomposites compared with the homopolymer. The nanocomposites exhibited ductile behavior up to 5 wt % of nanoclay. The improvement in Young's modulus is comparable with semicrystalline aliphatic nylon 6 nanocomposites. Both the main chain amide groups and the amorphous nature of the polyamide are responsible for enhancing the dispersion of the nanofillers, thereby, leading to improved properties of the nanocomposites. The structure-property relationship for these nanocomposites was also explored. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2605–2617, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号