首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybrid density functional theory calculations on the structures, vibrational frequencies, electron binding and dissociation energies, and bonding properties of CuO$_{3}^{-}$ and CuO3 species have been carried out. Stable isomers containing an O3 subunit and composed of O2 bound to CuO have been located on the potential energy hypersurfaces of CuO$_{3}^{-}$ and CuO3. The isomers formed by O2 bonded to CuO in side‐on and end‐on coordination are more stable than those containing an O3 subunit. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 81: 162–168, 2001  相似文献   

2.
The purpose of this study was to calculate the structures and energetics of CH3OH$_{2}^{+}$(H2O)n and CH3SH$_{2}^{+}$(H2O)n in the gas phase: we asked how the CH3OH$_{2}^{+}$ and CH3SH$_{2}^{+}$ moieties of CH3OH$_{2}^{+}$(H2O)n and CH3SH$_{2}^{+}$(H2O)n change with an increase in n and how can we reproduce the experimental values ΔH°n−1,n. For this purpose, we carried out full geometry optimizations with MP2/6‐31+G(d,p) for CH3OH$_{2}^{+}$(H2O)n (n=0,1,2,3,4,5) and CH3SH$_{2}^{+}$(H2O)n (n=0,1,2,3,4). We also performed a vibrational analysis for all clusters in the optimized structures to confirm that all vibrational frequencies are real. All of the vibrational frequencies of these clusters are real, and they correspond to equilibrium structures. For CH3OH$_{2}^{+}$(H2O)n, when n increases, (1) the C O bond length decreases, (2) the C H bond lengths do not change, (3) the O H bond lengths increase, (4) the OCH bond angles increase, (5) the COH bond angles decrease, (6) the charge on CH3 becomes less positive, and (7) these predicted values, except for the O H bond lengths of CH3OH$_{2}^{+}$(H2O)n, approach the corresponding values in CH3OH. The C O bond length in CH3OH$_{2}^{+}$(H2O)5 is shorter than that in CH3OH$_{2}^{+}$ in the gas phase by 0.061 Å at the MP2/6‐31+G(d,p) level. Except for the S H bond lengths in CH3SH$_{2}^{+}$(H2O)n, however, the structure of the CH3SH$_{2}^{+}$ moiety does not change with an increase in n. © 2000 John Wiley & Sons, Inc. J Comput Chem 22: 125–131, 2001  相似文献   

3.
Several \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm C}_{{\rm 4}} {\rm H}_{{\rm\ 8}} } \right]_{}^{_.^ + } $\end{document} ion isomers yield characteristic and distinguishable collisional activation spectra: \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm 1-butene} } \right]_{}^{_.^ + } $\end{document} and/or \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm 2-butene} } \right]_{}^{_.^ + } $\end{document} (a-b), \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm isobutene} } \right]_{}^{_.^ + } $\end{document} (c) and [cyclobutane]+ (e), while the collisional activation spectrum of \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm methylcyclopropane} } \right]_{}^{_.^ + } $\end{document} (d) could also arise from a combination of a-b and c. Although ready isomerization may occur for \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm C}_{{\rm 4}} {\rm H}_{{\rm 8}} } \right]_{}^{_.^ + } $\end{document} ions of higher internal energy, such as d or ea, b, and/or c, the isomeric product ions identified from many precursors are consistent with previously postulated rearrangement mechanisms. 1,4-Eliminations of HX occur in 1-alkanols and, in part, 1-buthanethiol and 1-bromobutane. The collisional activation data are consistent with a substantial proportion of 1,3-elimination in 1- and 2-chlorobutane, although 1,2-elimination may also occur in the latter, and the formation of the methylcycloprpane ion from n-butyl vinyl ether and from n-butyl formate. Surprisingly, cyclohexane yields the \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm linear butene} } \right]_{}^{_.^ + } $\end{document} ions a-b, not \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm cyclobutane} } \right]_{}^{_.^ + } $\end{document}, e.  相似文献   

4.
The Generator Coordinate Approximation, a relatively recent approximation formulated to solve systems of three or more bodies, is tested for its accuracy and viability by applying it to calculate the ro‐vibrational energies of the triatomic system H$_{3}^{+}$. We employ in this work a recently formulated basis called the Numerically Generated‐Discrete Variable Representation for the wave function and test it against the well‐known Finite Element Method basis. Comparison of the two results and with other results shows a tentative superiority of the Numerically Generated‐Discrete Variable Representation. In addition, many new physical properties of the Generator Coordinate Approximation were discovered. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 2028–2039, 2001  相似文献   

5.
The γ-distonic radical ions R$ \mathop {\rm O}\limits^ + $CHR′CH2?HR″ and their molecular ion counterparts R$ \mathop {\rm O}\limits^{{\rm + } \cdot } $CHR′CH2CH2R″ have been studied by isotopic labelling and collision-induced dissociation, applying a potential to the collision cell in order to separate activated from spontaneous decompositions. The stability of CH3$ \mathop {\rm O}\limits^ + $HCH(CH3)CH2?HCH3, C2H5$ \mathop {\rm O}\limits^ + $HCH(CH3)CH2?HCH3, CH3$ \mathop {\rm O}\limits^ + $HCH(CH3)CH2?H2, CH3$ \mathop {\rm O}\limits^ + $HCH2CH2?HCH3 and C2H5$ \mathop {\rm O}\limits^ + $HCH2CH2?HCH3, has been demonstrated and their characteristic decomposition, alcohol loss, identified. For all these γ-distonic ions, the 1,4-H abstraction leading to their molecular ion counterpart exhibits a primary isotope effect.  相似文献   

6.
Appearance potentials for the [C7H8]\documentclass{article}\pagestyle{empty}\begin{document}$\mathop +\limits_.$\end{document}ion produced in the fragmentation of n-butyl benzene, iso-butyl benzene and n-pentyl benzene have been measured by photon impact. The results indicate that, at threshold, the fragment ion has the toluene molecular ion structure.  相似文献   

7.
Characterization of [C4H5O]+ ions in the gas phase using their collisional activation spectra shows that the four C3H5\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O isomers CH2?C(CH3)\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O, CH2?CHCH2\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O, CH3CH?CH\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O and ?? \documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O are stable for ≥ 10?5 s. It is concluded further from the characteristic shapes for the unimolecular loss of CO from C3H5\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O ions generated from a series of precursor molecules that the CH2?CH(CH3)\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O- and CH2?CHCH2\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O-type ions dissociate over different potential surfaces to yield [allyl]+ and [2-propenyl]+ [C3H5]+ product ions respectively. Cyclopropyl carbonyl-type ions lose CO with a large kinetic energy release, which points to ring opening in the transition state, whereas this loss from CH3CH?CH\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O-type ions is proposed to occur via a rate determining 1,2-H shift to yield 2-propenyl cations.  相似文献   

8.
A New Mixed Valence Strontium Niobium Oxide Sr7Nb24+Nb45+O21 \documentclass{article}\pagestyle{empty}\begin{document}$ \widehat = $\end{document} Sr1.167NbO3.5 The unknown compound Sr7Nb6O21 kristallisiert nach Einkristall-Röntgenbeugungsdaten rhomboedrisch (Raumgruppe C? R3 ; a = 16,450(5) Å, α = 19,85(1)° trigonale Aufstellung: a = 5,670(1), c = 48,364(13) Å). The compound is built up by perovskite blocks with a width of 6 octahedra. The crystal chemistry especially of the interspace between those blocks is discussed in respect to related compounds.  相似文献   

9.
Based on an activation model, a available scheme to calculate the rate of the electron‐transfer reaction between transition‐metal complexes in aqueous solution is presented. Ab initio technique is used to determine the electron‐transfer reactivity of the type M(H2O)$^{2+/3+}_{6}$ of transition‐metal complexes at the UMP2/6‐311G level. The activation parameters and activation energies of the electron‐transfer systems are obtained via the activation model. An alternative determining method of the potential energy surface (curve) slope at the crossing point is given in which the inner‐sphere contribution of potential energy surface slope is expressed as the sum of two separate reactants. Theoretical self‐exchange rate constants for M(H2O)$^{2+/3+}_{6}$ (M = V, Cr, Mn, and Fe) systems are obtained at 298 K and zero ionic strength. The calculated results of the activation energy, electronic transmission factor, and electron‐transfer rate are compared with the corresponding quasi‐experimental values as well as those obtained from other methods, and better agreements are found. The present results indicate that the scheme can adequately describe the self‐exchange reactions involved in this study. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 78: 32–41, 2000  相似文献   

10.
\documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm C}_{{\rm 10}} {\rm H}_{{\rm 14}} } \right]_{}^{_.^ + } $\end{document} ions have been generated from a number of adamantanoid compounds, both by ionization and ionization followed-by fragmentation. Metastable ion abundance ratios of competitive reactions indicate the decomposition of these ions from common structures in all cases.  相似文献   

11.
The charge stripping mass spectra of [C2H5O]+ ions permit the clear identification of four distinct species: \documentclass{article}\pagestyle{empty}\begin{document}${\rm CH}_{\rm 3} - {\rm O - }\mathop {\rm C}\limits^{\rm + } {\rm H}_{\rm 2}$\end{document}, \documentclass{article}\pagestyle{empty}\begin{document}${\rm CH}_{\rm 3} - \mathop {\rm C}\limits^{\rm + } {\rm H - OH}$\end{document}, and \documentclass{article}\pagestyle{empty}\begin{document}${\rm CH}_{\rm 2} = {\rm CH - }\mathop {\rm O}\limits^{\rm + } {\rm H}_{\rm 2}$\end{document}. The latter, the vinyloxonium ion, has not been identified before. It is generated from ionized n-butanol and 1,3-propanediol. Its heat of formation is estimated to be 623±12 kJ mol?1. The charge stripping method is more sensitive to these ion structures than conventional collisional activation, which focuses attention on singly charged fragment ions.  相似文献   

12.
Loss of an alkyl group X? from acetylenic alcohols HC?C? CX(OH)(CH3) and gas phase protonation of HC?C? CO? CH3 are both shown to yield stable HC?C? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}(OH)(CH3) ions. Ions of this structure are unique among all other [C4H5O]+ isomers by having m/z 43 [C2H3O]+ as base peak in both the metastable ion and collisional activation spectra. It is concluded that the composite metastable peak for formation of m/z 43 corresponds to two distinct reaction profiles which lead to the same product ion, CH3\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}?O, and neutral, HC?CH. It is further shown that the [C4H5O]+ ions from related alcohols (like HC?C? CH(OH)(CH3)) which have an α-H atom available for isomerization into energy rich allenyl type molecular ions, consist of a second stable structure, H2C?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? C(OH)?CH2.  相似文献   

13.
The reactions of metastable $ {\rm CH}_{\rm 2} = {\rm CHCH =}\mathop {{\rm OCH}_{\rm 3}}\limits^{\rm +} $ oxonium ions generated by alkyl radical loss from ionized allylic alkenyl methyl ethers are reported and discussed. Three main reactions occur, corresponding to expulsion of H2O, C2H4/CO and CH2O. There is also a very minor amount of C3H6 elimination. The mechanisms of these processes have been probed by 2H- and 13C-labelling experiments. Special attention is given to the influence of isotope effects on the kinetic energy release accompanying loss of formaldehyde from 2H-labelled analogues of $ {\rm CH}_{\rm 2} = {\rm CHCH =}\mathop {{\rm OCH}_{\rm 3}}\limits^{\rm + } $. Suggestions for interpreting these reactions in terms of routes involving ion–neutral complexes are put forward.  相似文献   

14.
The molecular ions from three isomeric cyclanones isomerize to the ethyl-2-cyclohexanone ion prior to C2H4 elimination. With D- and 18O-labelled compounds it is shown by Mass Analyzed Ion Kinetic Energy Spectroscopy (MIKES.) that both isomerization and C2H4 loss are specific processes. By high resolution collisional activation spectra it is shown that the resultant fragment ion [C6H10O]\documentclass{article}\pagestyle{empty}\begin{document}$ 1^{+ \atop \dot{}} $\end{document} (m/z = 98) differs in structure from the cyclohexanone molecular ion.  相似文献   

15.
Ion cyclotron resonance spectrometry and deuterium labeling have been used to determine that nondecomposing \documentclass{article}\pagestyle{empty}\begin{document}${\rm (CH}_{\rm 3} {\rm)}_{\rm 2} \mathop {\rm N}\limits^{\rm + } {\rm = CH}_{\rm 2}$\end{document} ions do not isomerize to \documentclass{article}\pagestyle{empty}\begin{document}${\rm CH}_{\rm 3} {\rm CH = }\mathop {\rm N}\limits^{\rm + } {\rm HCH}_{\rm 3}$\end{document}.  相似文献   

16.
The barriers to partial rotation around the central single bond in chiral dienes \documentclass{article}\pagestyle{empty}\begin{document}${\rm HOCMe}_{\rm 2} \rlap{--} ({\rm CCl =\!= CCl\rlap{--})}_{\rm 2} {\rm X}$\end{document} have been determined by coalescence of either 1H NMR signals (X = CH2OCH3) or 13C NMR signals (X = H). In the presence of the optically active shift reagent (+) ? Eu(hfbc)3 all 1H signals were split at temperatures where the interconversion of enantiomers is slow. The temperature dependence of these spectra also yielded free activation enthalpies for the enantiomerizations which were in agreement with the ones obtained without Eu(hfbc)3. The assignment of the four methyl resonances appearing in the presence of (+) ? Eu(hfbc)3 at low temperature was possible by gradually increasing the rate of enantiomerization or gradually replacing the optically active auxiliary compound by the racemic one.  相似文献   

17.
A New Type of Ternary Cobalt Sulphide, A9Co2S7 (A $ \buildrel \wedge \over = $ K, Rb or Cs), containing Trigonal-Planar [CoS3] Units of Two- and Three-Valent Cobalt The passage of a stream of hydrogen over an alkali carbonate/cobalt/sulphur melt resulted in the preparation of the compounds K9Co2S7, Rb9Co2S7 and Cs9Co2S7. The structure of the potassium compound (Space group P213, Z = 4) could be determined from X-ray diffraction experiments on single crystals whilst X-ray investigations of powdered samples of the rubidium and caesium compounds indicate isotypic atomic arrangements with K9Co2S7. The characteristic structural elements of these compounds are trigonal-planar [CoS3]-units of two- and three-valent cobalt. The results from investigations of the magnetic properties of these ternary cobalt sulphides are in agreement with those expected for mixed-valent CoII/CoIII structures. The analogously-composed ferrates are closely structurally-related to these sulphides and show corresponding magnetic properties [1].  相似文献   

18.
The relativistic dynamics of one spin‐½ particle moving in a uniform magnetic field is described by the Hamiltonian $\mathbf{h}^{0}_{D}(\pi)=c\alpha\cdot\pi+\beta mc^{2}$. The discrete (and semidiscrete) eigenvalues and the corresponding eigenspinors are in principle known from the work of Dirac, Rabi, and Bloch. These are extensively reviewed here. Next, exact solutions are worked out for the recoil dynamics in relative coordinates, which involves the Hamiltonian $\mathbf{h}^{0}_{D}(-\mathbf{k})=-c\alpha\cdot\mathbf{k}+\beta mc^{2}$. Exact solutions are also explicitly calculated in the case where the spin‐½ particle has an anomalous magnetic moment such that its Hamiltonian is given by $\mathbf{h}_{D}(\pi)=\mathbf{h}^{0}_{D}(\pi)-\beta\mu_{\mathrm{ano}}\sigma\cdot\mathbf{B}$. Similar exact solutions are derived here when the recoiling particle has an anomalous magnetic moment, that is, the eigenvalues and eigenspinors of the Hamiltonian $\mathbf{h}_{D}(-\mathbf{k})=\mathbf{h}^{0}_{D}(-\mathbf{k})-\beta\mu_{\mathrm{ano}}\sigma\cdot\mathbf{B}$ are explicitly obtained. The diagonalized and separable form of the Hamiltonian h D(π), written as $\tilde{\mathbf{h}}_{D}(\pi)$, has exceedingly simple forms of eigenspinors. Similarly, the diagonalized and separable form of the operator h D(? k ), written as $\tilde{\mathbf{h}}_{D}(-\mathbf{k})$, has very simple eigenspinors. The importance of these exact solutions is that the eigenspinors can be used as bases in a calculation involving many spin‐½ particles placed in a uniform magnetic field. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 82: 209–217, 2001  相似文献   

19.
《Electroanalysis》2006,18(10):993-1000
A composite film modified electrode containing a Keggin‐type heteropolyanion, H3(PMo12O40)?H2O, was fabricated with 3‐aminopropyltrimethoxysilane (APMS) attached on an electrochemically activated glassy carbon (GC) electrode through the formation of C? O? Si bond. PMo12O was then complexed with APMS through the electrostatic interaction between the phosphate groups of PMo12O and amine groups of APMS (PMo12O ‐APMS). XPS and cyclic voltammetry were employed for characterization of the composite film. The PMo12O ‐APMS modified electrode showed three reversible redox pairs with smaller peak‐separation and was stable in the larger pH range compared with that in a solution phase. The catalytic properties of the modified electrode for the reduction of ClO , BrO , and IO were studied and the modified electrode exhibited good electrocatalytic activities for the three anions. The experimental parameters, such as pH, temperature, and the applied potential were optimized. The detection limits were determined to be 7.0±0.35 μM, 4.0±0.17 μM, and 0.1±0.04 μM for ClO , BrO , and IO , respectively. The modified electrode was applied to natural water samples for the detection of ClO , BrO , and IO .  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号