首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K2Mn[P2S6] was synthesized from the elements in sealed quartz ampoules at 1 173 K. The compound forms transparent light brown crystals, stable against air and moisture. The crystal structure (monoclinic; space group P21/n, No. 14; a = 6.1966(9), b = 12.133(2), c = 7.424(1) Å, β = 101.52(1)°, Z = 2; Pearson code mP22) consists of columns of face-sharing S6 polyhedra (distorted octahedra and trigonal antiprisms) parallel to the a axis, interconnected by inserted K+ (CN 10; d(K? S) = 3.23–3.92 Å). The S6 polyhedra of the columns are centered alternately by Mn (in octahedra with d?(Mn? S) = 2.647 Å) and P2 pairs (in trigonal antiprisms) which are inclined to the a axis by 73.1°. The bond lengths in the resulting hexathiodiphosphate(IV) anions, [P2S6]4?, with approximate 3 2/m–D3d symmetry, are d(P? P) = 2.211 Å and d(P? S) = 2.018 Å. K2Mn[P2S6] is isotypic to K2Fe[P2S6], being the second member of this structure type. The internal modes of the observed Raman and FIR/IR spectra of K2Mn[P2S6] are in accord with the factor group analysis, and the fundamentals are assigned on the basis of [P2S6]4? units, taking into account the deviation of the D3d symmetry.  相似文献   

2.
The crystal structures of three isotypic ortho­rhom­bic dihydrogendiphosphates, namely dipotassium copper(II)/nickel(II)/zinc(II) bis­(dihydrogendiphosphate) dihydrate, K2M(H2P2O7)2·2H2O (M = Cu, Ni and Zn), have been refined from single‐crystal data. The M2+ and K+ cations are located at sites of m symmetry, and the P atoms occupy general positions. These compounds also exist in triclinic forms with very similar structural features. The structures of both forms are compared, as well as the geometry of the MO6 octa­hedron, which is considerably elongated towards the water mol­ecules for M = Ni and Cu. Such elongation has not been observed among the other representatives of the family. A Raman study of the whole series K2M(H2P2O7)2·2H2O (M = Mn, Co, Ni, Cu, Zn and Mg) is reported.  相似文献   

3.
The silver bismuth trideca­sulfide Ag3.5Bi7.5S13 crystallizes in the monoclinic space group C2/m. Its structure is built up of two alternating kinds of layered modules parallel to (001). In the module denoted A, octa­hedra around the metal positions (M = Ag/Bi, M2 and an S atom on 2/m, other atoms on m) alternate with paired monocapped trigonal prisms around Bi. The NaCl‐type module B is composed of parallel eight‐membered chains of edge‐sharing octa­hedra running dia­gonally across it. Ag3.5Bi7.5S13 is the member with N = 8 of the pavonite homologous series NP of ternary compounds with the general formula [Bi2S3]2·[AgBiS2](N−1)/2.  相似文献   

4.
Cs6Ta4S22     
The reaction of Cs2S3, Ta and S yields single crystals of the new caesium tantalum chalcogenide hexacaesium tetratantalum docosa­sulfide, Cs6Ta4S22, which is isotypic with Rb6Ta4S22 and the niobium compounds A6Nb4S22 (A = Rb, Cs). The structure consists of discrete [Ta4S22]6? anions and Cs+ cations.  相似文献   

5.
Rubidium trigallium bis(triphosphate), RbGa3(P3O10)2 has been synthesized by solid‐state reaction and studied by single‐crystal X‐ray diffraction at room temperature. This compound is the first anhydrous gallium phosphate containing both GaO4 tetra­hedra (Ga1) and GaO6 octa­hedra (Ga2 and Ga3). The three independent Ga atoms are located on sites with imposed symmetry 2 (Wickoff positions 4a for Ga1 and 4b for Ga2 and Ga3). The GaO4 and GaO6 polyhedra are connected through the apices to triphosphate groups and form a three‐dimensionnal host lattice. This framework presents inter­secting tunnels running along the [001] and <110> directions, where the Rb2+ cations are located on sites with imposed symmetry 2 (Wickoff position 4a). The structure also exhibits remarkable features, such as infinite helical columns created by the junction of GaO4 and PO4 tetra­hedra.  相似文献   

6.
The new hexathiodiphosphate(IV) hydrates K4[P2S6] · 4 H2O ( 1 ), Rb4[P2S6] · 6 H2O ( 2 ), and Cs4[P2S6] · 6 H2O ( 3 ) were synthesized by soft chemistry reactions from aqueous solutions of Na4[P2S6] · 6 H2O and the corresponding heavy alkali‐metal hydroxides. Their crystal structures were determined by single crystal X‐ray diffraction. K4[P2S6] · 4 H2O ( 1 ) crystallizes in the monoclinic space group P 21/n with a = 803.7(1), b = 1129.2(1), c = 896.6(1) pm, β = 94.09(1)°, Z = 2. Rb4[P2S6] · 6 H2O ( 2 ) crystallizes in the monoclinic space group P 21/c with a = 909.4(2), b = 1276.6(2), c = 914.9(2) pm, β = 114.34(2)°, Z = 2. Cs4[P2S6] · 6 H2O ( 3 ) crystallizes in the triclinic space group with a = 742.9(2), b = 929.8(2), c = 936.8(2) pm, α = 95.65(2), β = 112.87(2), γ = 112.77(2)°, Z = 1. The structures are built up by discrete [P2S6]4? anions in staggered conformation, the corresponding alkali‐metal cations and water molecules. O ··· S and O ··· O hydrogen bonds between the [P2S6]4? anions and the water molecules consolidate the structures into a three‐dimensional network. The different water‐content compositions result by the corresponding alkali‐metal coordination polyhedra and by the prefered number of water molecules in their coordination sphere, respectively. The FT‐Raman and FT‐IR/FIR spectra of the title compounds have been recorded and interpreted, especially with respect to the [P2S6]4? group. The thermogravimetric analysis showed that K4[P2S6] · 4 H2O converted to K4[P2S6] as it was heated at 100 °C.  相似文献   

7.
AgCo3PO4(HPO4)2     
The structure of the hydro­thermally synthesized compound AgCo3PO4(HPO4)2, silver tricobalt phosphate bis­(hydrogen phosphate), consists of edge‐sharing CoO6 chains linked together by the phosphate groups and hydrogen bonds. The three‐dimensional framework delimits two types of tunnels which accommodate Ag+ cations and OH groups. The title compound is isostructural with the compounds AM3H2(XO4)3 (A = Na or Ag, M = Co or Mn, and X = P or As) of the alluaudite structure type.  相似文献   

8.
The crystal structures of two new diphosphates, sodium hexamanganese bis­(diphosphate) triphosphate, NaMn6(P2O7)2(P3O10), and potassium hexacadmium bis­(diphosphate) triphosphate, KCd6(P2O7)2(P3O10), confirm the rigidity of the M6(P2O7)2(P3O10) matrix (M is Mn or Cd) and the relatively fixed dimensions of the tunnels extending in the a direction of the unit cell. The compounds are isomorphous; the P2O74? anion and the alkali metal cations lie on mirror planes. Bond‐valence analysis of the bonding details of the atoms found within the tunnels permits a prediction of the conductivity.  相似文献   

9.
The crystal structures of dirubidium hepta­oxodimolybdate, Rb2Mo2O7, and dicaesium hepta­oxodimolybdate, Cs2Mo2O7, in the space groups Ama2 and P21/c, respectively, have been determined for the first time by single‐crystal X‐ray diffraction. The structures represent two novel structure types of monovalent ion dimolybdates, A2Mo2O7 (A = alkaline elements, NH4, Ag or Tl). In the structure of Rb2Mo2O7, Mo atoms are on a twofold axis, on a mirror plane and in a general position. One of the Rb atoms lies on a twofold axis, while three others are on mirror planes. Two O atoms attached to the Mo atom on a mirror plane are located on the same plane. Rubidium dimolybdate contains a new kind of infinite Mo–O chain formed from linked MoO4 tetra­hedra and MoO6 octa­hedra alternating along the a axis, with two terminal MoO4 tetra­hedra sharing corners with each octa­hedron. The chains stack in the [001] direction to form channels of an approximately square section filled by ten‐coordinate Rb ions. Seven‐ and eight‐coordinate Rb atoms are located between chains connected by a c translation. In the structure of Cs2Mo2O7, all atoms are in general positions. The MoO6 octa­hedra share opposite corners to form separate infinite chains running along the c axis and strengthened by bridging MoO4 tetra­hedra. The same Mo–O polyhedral chain occurs in the structure of Na2Mo2O7. Eight‐ to eleven‐coordinate Cs atoms fill the space between the chains. The atomic arrangement of caesium dimolybdate has an ortho­rhom­bic pseudosymmetry that suggests a possible phase transition P21/cPbca at elevated temperatures.  相似文献   

10.
The geometry of racemic methyl 2‐(4‐methyl‐2‐thio­xo‐2,3‐di­hydro­thia­zol‐3‐yl­oxy)­propanoate, C8H11NO3S2, (I), is characterized by a distorted heterocyclic five‐membered ring and an enantiomorphic N‐alkoxy substituent, which is inclined at an angle of −68.8° to the thia­zole­thione plane in (M)‐(I). The unit cell consists of a 1:1 ratio of R,P‐ and S,M‐configured mol­ecules of (I). The combination of a P configuration at the N—O axis and an R configuration at the asymmetric propanoate Cβ atom on one side, and an S,M configuration on the other side, is considered to originate from steric interactions. The largest substituent at the asymmetric propanoate Cβ atom, i.e. the methoxycarbonyl group, resides above the methyl substituent; the medium‐sized propanoate γ‐methyl substituent points in the opposite direction with respect to the N—O bond, whereas the H atom is located above the C=S double bond of the thiazolethione subunit.  相似文献   

11.
On Polychalcogenides of Thallium with M2Q11 Groups as a Structural Building Block. I Preparation, Properties, X‐ray Diffractometry, and Spectroscopic Investigations of Tl4Nb2S11 and Tl4Ta2S11 The new ternary compounds Tl4Nb2S11 and Tl4Ta2S11 were prepared using Thallium polysulfide melts. Tl4M2S11 crystallises isotypically to K4Nb2S8.9Se2.1 in the triclinic space group P 1 with a = 7.806(2) Å, b = 8.866(2) Å, c = 13.121(3) Å, α = 72.72(2)°, β = 88.80(3)°, and γ = 85.86(2)° for M = Nb and a = 7.837(1) Å, b = 8.902(1) Å, c = 13.176(1) Å, α = 72.69(1)°, β = 88.74(1)°, and γ = 85.67(1)° for M = Ta. The interatomic distances as well as angles within the [M2S11]4– anions are similar to those of the previously reported data for analogous alkali metal polysulfides. Significant differences between Tl4M2S11 and A4M2S11 (A = K, Rb, Cs) are obvious for the shape of the polyhedra around the electropositive elements. The two title compounds melt congruently at 732 K (M = Nb) and 729 K (M = Ta). The optical band gaps were estimated as 1.26 eV for Tl4Nb2S11 and as 1.80 eV for the Tantalum compound.  相似文献   

12.
The crystal structure of Sr4Mn2NiO9 has been refined on single crystal. This phase belongs to the series A1+x(AxB1–x)O3 (x=1/3) related to the 2H-hexagonal perovskite. The structure contains transition metals in chains of oxide polyhedra (trigonal prisms and octahedra); neighboring chains are separated from each other by the Sr atoms. The sequence of the face sharing polyhedra along the chains is two octahedra + one trigonal prism. Mn occupies the octahedra and Ni is disordered in the trigonal prism with ≈80% in the pseudo square faces of the prism and ≈20% at the centre. This result has been confirmed by XANES experiments at Mn K and Ni K edges, respectively. Sr4Mn2NiO9 is antiferromagnetic with a Néel temperature at T=3 K. The Curie constant measured at high temperature is in good agreement with ≈80% of the Ni2+ ions in the spin state configuration S=0.  相似文献   

13.
K2Fe[P2S6] was synthesized from the elements at 1173 K in sealed quartz tubes. The compound forms transparent orange crystals, stable against air and moisture. K2Fe[P2S6] crystallizes in the monoclinic system, space group P21/n (No. 14), with cell dimensions (T = 298.5 K) a = 6.0622(4), b = 12.172(1) and c = 7.3787(8) Å, β = 101.113(7)°, Z = 2. The novel structure type (mP22) is characterized by columns of alternating face-sharing S6 octahedra and trigonal antiprisms (both distorted) parallel to the a axis, which are interconnected by inserted K+ (CN 10; {2,6,2}-polyhedra; d(K? S) = 3.231 ? 3.845 Å). The S6 polyhedra of the columns are centered alternately by Fe (d?(Fe? S) = 2.577 Å) and P2 pairs which are inclined to the a axis by 73.4°. The bond lengths in the hexathiodiphosphate(IV) anions, [P2S6]4?, with approximate 3 2/m – D3d symmetry, are d?(P? P) = 2.20 and d?(P? S) = 2.02 Å. The compound is paramagnetic above TN = 28 K with μ = 4.69 B.M. and orders antiferromagnetically below TN. The internal modes of the observed Raman and FIR spectra of K2Fe[P2S6] are in accord with the factor group analysis, and the spectra are assigned on the basis of [P2S6]4? units, taking into account the deviation from D3d symmetry.  相似文献   

14.
Two novel K/Mn phosphate hydrates, namely, dipotassium trimanganese dipyrophosphate dihydrate, K2Mn3(H2O)2[P2O7]2, (I), and potassium manganese dialuminium triphosphate dihydrate, KMn(H2O)2[Al2(PO4)3], (II), were obtained in the form of single crystals during a single hydrothermal synthesis experiment. Their crystal structures were studied by X‐ray diffraction. Both new compounds are members of the morphotropic series of phosphates with the following formulae: A2M3(H2O)2[P2O7]2, where A = K, NH4, Rb or Na and M = Mn, Fe, Co or Ni, and AM2+(H2O)2[M3+2(PO4)3], where A = Cs, Rb, K, NH4 or (H3O); M2+ = Mn, Fe, Co or Ni; and M3+ = Al, Ga or Fe. A detailed crystal chemical analysis revealed correlations between the unit‐cell parameters of the members of the series, their structural features and the sizes of the cations. It has been shown that a mixed type anionic framework is formed in (II) by aluminophosphate [(AlO2)2(PO4)2] layers, with a cationic topology similar to the Si/Al‐topology of the crystal structures of feldspars. A study of the magnetic susceptibility of (II) demonstrates a paramagnetic behaviour of the compound.  相似文献   

15.
Two new isotypic triple molybdates, namely tri­cesium lithium dicobalt tetra­kis­(tetra­oxo­molybdate), Cs3LiCo2(MoO4)4, and tri­rubidium lithium dizinc tetra­kis­(tetra­oxo­molybdate), Rb3LiZn2(MoO4)4, crystallize in the non‐centrosymmetric cubic space group I3d and adopt the Cs6Zn5(MoO4)8 structure type. In the parent structure, the Zn positions have 5/6 occupancy, while they are fully occupied by statistically distributed M2+ and Li+ cations in the title compounds. In both structures, all corners of the (M2/3Li1/3)O4 tetra­hedra (M = Co and Zn), having point symmetry , are shared with the MoO4 tetra­hedra, which lie on threefold axes and share corners with three (M,Li)O4 tetra­hedra to form open mixed frameworks. Large alkaline cations occupy distorted cubocta­hedral cavities with symmetry. The mixed tetra­hedral frameworks in the structures are close to those of mayenite (12CaO·7Al2O3) and the related compounds 11CaO·7Al2O3·CaF2, wadalite (Ca6Al5Si2O16Cl3) and Na6Zn3(AsO4)4·3H2O, but the terminal vertices of the MoO4 tetra­hedra are directed in opposite directions along the threefold axes compared with the configurations of Al(Si)O4 or AsO4 tetra­hedra. The cation arrangements in Cs3LiCo2(MoO4)4, Rb3LiZn2(MoO4)4 and Cs6Zn5(MoO4)8 repeat the structure of Y3Au3Sb4, being stuffed derivatives of the Th3P4 type.  相似文献   

16.
The title compound, tetra­rubidium tetra­oxa­tin(IV), crystallizes with the Na4CoO4 structure type, showing discrete SnO44? anions as main building blocks. The structure is thus isotypic with a series of corresponding A4MO4 compounds(A = alkali metal and M = group IV element).  相似文献   

17.
The crystal structures of the title compounds, ammonium risedronate dihydrate, NH4+·C7H10NO7P2·2H2O, (I), and potassium risedronate dihydrate, K+·C7H10NO7P2·2H2O, (II), have been determined from single‐crystal X‐ray data collected at 120 K. Compound (I) forms a three‐dimensional hydrogen‐bonded network which connects the ammonium and risedronate ions and the water mol­ecules. In compound (II), the K+ ions are seven‐coordinated in a capped distorted trigonal prism. The coordination polyhedra form chains by corner‐sharing, and these chains are connected by phosphon­ate groups into layers in the ac plane. The layers are stacked and connected by hydrogen bonds in the b direction. The risedronate conformation is determined by intra­molecular inter­actions fine‐tuned by crystal packing effects. All H‐atom donors in both structures are involved in hydrogen bonding, with DA distances between 2.510 (2) and 3.009 (2) Å.  相似文献   

18.
The compound [Ni(QM)2], QM=4,6‐di‐tert‐butyl‐N‐(2‐methylthiomethylphenyl)‐o‐iminobenzoquinone, is a singlet diradical species with approximately planar configuration at the tetracoordinate metal atom and without any Ni?S bonding interaction. One‐electron oxidation results in additional twofold Ni?S coordination (dNi?S≈2.38 Å) to produce a complex cation of [Ni(QM)2](PF6) with hexacoordinate NiII and two distinctly different mer‐configurated tridentate ligands. The O,O′‐trans arrangement in the neutral precursor is changed to an O,O′‐cis configuration in the cation. The EPR signal of [Ni(QM)2](PF6) has a very large g anisotropy and the magnetic measurements indicate an S=3/2 state. The dication was structurally characterized as [Ni(QM)2](ClO4)2 to exhibit a similar NiN2O2S2 framework as the monocation. However, the two tridentate (O,N,S) ligands are now equivalent according to the formulation [NiII(QM0)2]2+. Cyclic voltammetry reflects the qualitative structure change on the first, but not on the second oxidation of [Ni(QM)2], and spectroelectrochemistry reveals a pronounced dependence of the 800–900 nm absorption on the solvent and counterion. Reduction of the neutral form occurs in an electrochemically reversible step to yield an anion with an intense near‐infrared absorption at 1345 nm (ε=10400 M ?1 cm?1) and a conventional g factor splitting for a largely metal‐based spin (S=1/2), suggesting a [(QM . ?)NiII(QM2?)]? configuration with a tetracoordinate metal atom with antiferromagnetic NiII–(QM . ?) interactions and symmetry‐allowed ligand‐to‐ligand intervalence charge transfer (LLIVCT). Calculations are used to understand the Ni?S binding activity as induced by remote electron transfer at the iminobenzoquinone redox system.  相似文献   

19.
The structure of the title compound, [Mn(tpy)2](S4O6)·3H2O (tpy is 2,2′:6′,2′′-ter­pyridine, C15H11N3), consists of monomeric [Mn(tpy)2]2+ units embedded in a complex anionic network made up of tetra­thionate ions and hydration water mol­ecules connected via a complex hydrogen-bonding scheme.  相似文献   

20.
The structure of bis(1,10‐phenanthroline‐κ2N,N′)(thio­sulfato‐κ2O:S)­manganese(II) methanol solvate, [Mn(S2O3)(C12H8N2)2]·CH3OH, is made up of Mn2+ centers coordinated to two bidentate phenanthroline (phen) groups and an S,O‐chelating thio­sulfate anion, forming monomeric entities. The structure of catena‐poly­[[di­aqua(2,9‐di­methyl‐1,10‐phen­anthro­line‐κ2N,N′)­manganese(II)]‐μ‐thio­sulfato‐κ2O:S], [Mn(S2O3)(C14H12N2)(H2O)2]n, is polymeric, consisting of Mn(dmph)(H2O)2 units (dmph is 2,9‐di­methyl‐1,10‐phenanthroline) linked by thio­sulfate anions acting in an S,O‐chelating manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号