首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Excited‐state intramolecular proton transfer (ESIPT) of four imidazole derivatives, 2‐(2′‐hydroxyphenyl)imidazole (HPI), 2‐(2′‐hydroxyphenyl)benzimidazole (HPBI), 2‐(2′‐hydroxyphenyl)‐1H‐phenanthro[9,10‐d]imidazole (HPPI) and 2‐(2′‐hydroxyphenyl)‐1‐phenyl‐1H‐phenanthro[9,10‐d]imidazole (HPPPI), were studied by the sophisticated CASSCF/CASPT2 methodology. The state‐averaged SA‐CASSCF method was used to optimize their geometry structures of S0 and S1 electronic states, and the CASPT2 calculations were used for the calibration of all the single‐point energies, including the absorption and emission spectra. A reasonable agreement is found between the theoretical predictions and the available experimental spectral data. The forward ESIPT barriers of four target compounds gradually decrease with the increase of molecular size. On the basis of the present calculations, it is a plausible speculation that the larger the size, the faster is the ESIPT rate, and eventually, HPPPI molecule can undergo a completely barrierless ESIPT to the more stable S1 keto form. Additionally, taking HPI as a representative example, the radiationless decays connecting the S0 and S1/S0 conical intersection structures were also studied by constructing a linearly interpolated internal coordinate (LIIC) reaction path. The qualitative analysis shows that the LIIC barrier of HPI in the keto form is remarkably lower than that of its enol‐form, indicating that the former has a big advantage over the latter in the nonradiative process. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
LiOH is one of the strong bases among neutral molecules. What about hydroxides of small Lin (n = 2 ? 5) clusters? The addition of a single atom to a cluster sometimes has dramatic effects on its reactivity. This fact motivated us to perform an ab initio MP2/6‐311++G(d, p) investigation on LinOH species (n = 1 ? 5). These LinOH species are stabilized by both ionic as well as covalent interactions, and are found to be stable against elimination of LiOH and OH. We have determined their gas and aqueous phase basicity by considering hypothetical protonation reactions. The calculated proton affinities of LinOH (n ≥ 2) suggest their reduced basicity as compared to LiOH by 50–100 kJ/mol. The NBO charges and the highest occupied molecular orbitals also reveal the electride and alkalide characteristics of Li2OH and Li3OH, respectively. © 2016 Wiley Periodicals, Inc.  相似文献   

3.
A few touches on the thematic palette “molecular protonation” directly linked to the concept of molecular stability have been accomplished. They are of different nature, of different origin, and taken from “different angles” of lighting; however, together, they definitely provide a sufficiently complete picture “The protonation interaction, as being strong enough, may break the stability of molecules subject to protonation.” © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

4.
The substituent effect of electron‐withdrawing groups on electron affinity and gas‐phase basicity has been investigated for substituted propynl radicals and their corresponding anions. It is shown that when a hydrogen of the α‐CH3 group in the propynyl system is substituted by an electron‐withdrawing substituent, electron affinity increases, whereas gas‐phase basicity decreases. These results can be explained in terms of the natural atomic charge of the terminal acetylene carbon of the systems. The calculated electron affinities are 3.28 eV (?C?C? CH2F), 3.59 eV (?C?C? CH2Cl) and 3.73 eV (?C?C? CH2Br), and the gas‐phase basicities of their anions are 359.5 kcal/mol (?:C?C? CH2F), 354.8 kcal/mol (:C?C? CH2Cl) and 351.3 kcal/mol (?:C?C? CH2Br). It is concluded that the larger the magnitude of electron‐withdrawing, the greater is the electron affinity of radical and the smaller is the gas‐phase basicity of its anion. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

5.
The molecular geometry, vibrational frequencies, and gauge including atomic orbital (GIAO) 1H‐ and 13C NMR chemical shift values of the title compound in the ground state have been calculated using the Hartree‐Fock (HF) and density functional theory (DFT) methods with 6‐31G(d) basis sets, and compared with the experimental data. The calculated results show that the optimized geometries can well reproduce the crystal structural parameters and the theoretical vibrational frequencies, and 1H‐ and 13C NMR chemical shift values show good agreement with experimental data. To determine conformational flexibility, the molecular energy profile of the title compound was obtained by semiempirical (AM1) calculations with respect to the selected torsion angle, which was varied from ?180° to +180° in steps of 10°. The energetic behavior of the title compound in solvent media was examined using the B3LYP method with the 6‐31G(d) basis set by applying the Onsager and the polarizable continuum model (PCM). The results obtained with these methods reveal that the PCM method provided more stable structure than Qnsager's method. By using TD‐DFT method, electronic absorption spectra of the title compound have been predicted and a good agreement with the TD‐DFT method and the experimental one is determined. The predicted nonlinear optical properties of the title compound are much greater than ones of urea. In addition, the molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis, NBO analysis and thermodynamic properties of the title compound were investigated using theoretical calculations. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

6.
As potential inhibitors of penicillin‐binding proteins (PBPs), we focused our research on the synthesis of non‐traditional 1,3‐bridged β‐lactams embedded into macrocycles. We synthesized 12‐ to 22‐membered bicyclic β‐lactams by the ring‐closing metathesis (RCM) of bis‐ω‐alkenyl‐3(S)‐aminoazetidinone precursors. The reactivity of 1,3‐bridged β‐lactams was estimated by the determination of the energy barrier of a concerted nucleophilic attack and lactam ring‐opening process by using ab initio calculations. The results predicted that 16‐membered cycles should be more reactive. Biochemical evaluations against R39 DD‐peptidase and two resistant PBPs, namely, PBP2a and PBP5, revealed the inhibition effect of compound 4d , which featured a 16‐membered bridge and the N‐tert‐butyloxycarbonyl chain at the C3 position of the β‐lactam ring. Surprisingly, the corresponding bicycle, 12d , with the PhOCH2CO side chain at C3 was inactive. Reaction models of the R39 active site gave a new insight into the geometric requirements of the conformation of potential ligands and their steric hindrance; this could help in the design of new compounds.  相似文献   

7.
A theoretical study of the C?H···N hydrogen bond in the interactions of trihalomethanes CHX3 (X = F, Cl, Br) with ammonia and its halogen derivatives NH2Y (Y = F, Cl, Br) has been carried out thoroughly. The complexes are quite stable, and their stability increases in going from CHF3 to CHCl3 then to CHBr3 when Y keeps unchanged. With the same CHX3 proton donor, enhancement of the gas phase basicity of NH2Y strengthens stability of the CHX3···NH2Y complex. The C?H···N hydrogen bond strength is directly proportional to the increase of proton affinity (PA) at N site of NH2Y and the decrease of deprotonation enthalpy (DPE) of C?H bond in CHX3. The CHF3 primarily appears to favor blue shift while the red‐shift is referred to the CHBr3. The blue‐ or red‐shift of CHCl3 strongly depends on PA at N site of NH2Y. We suggest the ratio of DPE/PA as a factor to predict which type of hydrogen bond is observed upon complexation. The SAPT2+ results show that all C?H···N interactions in the complexes are electrostatically driven regardless of the type of hydrogen bond, between 48% and 61% of the total attractive energy, and partly contributed by both induction and dispersion energies.  相似文献   

8.
By making use of a novel diastereotopicity probe, namely C(CF3)2OH, it has been possible to measure by very low temperature 19F NMR spectroscopy the elusive aryl–aryl rotation barriers of biphenyls bearing an OH or F group in one ortho position. The experimental values (5.4 and 4.4 kcal mol?1, respectively) are matched by those from ab initio calculations (5.3 and 4.3 kcal mol?1, respectively).  相似文献   

9.
The estimate of the magnitude and the orientation of molecular electric dipole moments from the vector sum of bond or fragment dipole moments is a widely used approach in chemistry. However, the limitations of this intuitive model have rarely been tested experimentally, particularly for electronically excited states. Herein, we find rules for a number of indole derivatives by using rotationally resolved electronic Stark spectroscopy and ab initio calculations. Based on a natural‐bond‐orbital analysis, we discuss whether the vector additivity rule can be applied in a given electronic state. From a comparison of the experimental data with ab initio calculations, we deduced that the additivity model does not apply when the flow of electron density from the substituent is opposed to that inside the chromophore.  相似文献   

10.
The structure and electronic properties of the electronic ground state and the lowest excited singlet state (S1) of 5‐fluoroindole (5FI) were determined by using rotationally resolved spectroscopy of the vibration‐less electronic origin of 5FI. From the parameters of the axis reorientation Hamiltonian, the absolute orientation of the transition dipole moment in the molecular frame was determined and the character of the excited state was identified as Lb.  相似文献   

11.
12.
13.
It was shown that dipole‐stabilized paramagnetic carbanion lithiated 4,4,5,5‐tetramethyl‐4,5‐dihydro‐1H‐imidazol‐1‐oxyl 3‐oxide can be attached in a nucleophilic manner to either isolated or conjugated aldonitrones of the 2,5‐dihydroimidazole 3‐oxide and 2H‐imidazole 1‐oxide series to afford adducts the subsequent oxidation of which leads to polyfunctional mono‐ and diradicals. According to XRD, at least two polymorphic modifications can be formed during crystallization of the resulting paramagnetic compounds, and for each of them, geometric parameters of the molecules are similar. An EPR spectrum of the diradical in frozen toluene has a complicated lineshape, which can be fairly well reproduced by using X‐ray diffraction structural analysis and the following set of parameters: D=14.9 mT, E=1.7 mT; tensor a(14N)=[0.260 0.260 1.625] mT, two equivalent tensors for the nitronyl nitroxide moiety a(14N)=[0.198 0.198 0.700] mT, and g≈2.007. According to our DFT and ab initio calculations, the intramolecular exchange in the diradical is very weak and most likely ferromagnetic.  相似文献   

14.
15.
The molecular geometries of polyyne chains H(CC)nH with their deprotonated forms (anions) have been optimized using ab initio LCAO‐SCF molecular orbital (MO) method and density functional theory at different basis set levels. The polyynes possess a series of alternating single and triple bonds. On the theoretical side the persistence of bond alternation and the effect of chain lengthening on the individual bond length in linear conjugated polyyne chains has been investigated. The common conclusion has been drawn that the bond alternation will persist and that bond length variation will be small. The triple bond length increases progressively toward the asymptotic limits as the value of n increases progressively. If the split‐valence basis set was employed, the total charges obtained using the Mulliken population analysis yielded unrealistic values. Using natural bond orbital (NBO) analysis or Bader's analysis, the net charges of the individual atoms converge very rapidly to their asymptotic limits, and the central atoms have almost zero charges in contrast to the Mulliken population analysis results. The reliability of deprotonation energies of neutral polyynes and their monoanionic derivatives calculated from the differences in molecular energy of the parent chains and the corresponding anions E(H(CC)n)–E(H(CC)nH) and E((CC)n)–E(H(CC)n) was tested for different basis sets. The increase of the number of CC bonds in the chain decreases these differences asymptotically. The studied compounds are the best available building blocks in bimetallic compounds with useful properties in molecular electronics and nonlinear optics. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 82: 73–85, 2001  相似文献   

16.
A hybrid statistical physics—quantum‐chemical methodology was implemented to study the water‐assisted intramolecular proton‐transfer processes in 5‐ and 6‐azauracils in aqueous solutions. The solvent effects were included in the model by explicit inclusion of two pairs of water molecules, which model the relevant part of the first hydration shell around the solute. The position of these water molecules was initially estimated by carrying out a classical Metropolis of dilute water solutions of the title compounds and subsequently analyzing solute–solvent intermolecular interactions in the Monte Carlo‐generated configurations. Sequentially to the statistical physics simulation, ab initio quantum mechanical (QM) level of theory was implemented. The effects of the water as solvent (at ab initio QM level) were introduced at two different levels—using solute–solvent clusters (four‐water molecules) and using the same clusters embedded in an external continuum. Full geometry optimizations of these complexes were carried out at MP2/6–31 + G(d, p) and conductor‐polarizable continuum model (C‐PCM)/MP2/6–31 + G(d, p). Single point calculations were performed at CCSD(T)/6–31 + G(d, p)//MP2/6–31 + G(d, p) computational level to obtain more accurate energies. According to our calculations hydrated azauracils should exist in three forms: mainly dioxo form and two hydroxy forms. The calculated proton transfer activation energies for tautomeric reactions of 5‐azauracil and 6‐azauracil show different pictures for these two compounds. According to C‐PCM/MP2/6–31 +G(d, p) data, water‐assisted proton transfer in 5‐azauracil realizes through two parallel reactions: 1,3,5‐triazine‐2,4(1H,3H)‐dione → 6‐hydroxy‐1,3,5‐triazin‐2(1H)‐one and 1,3,5‐triazine‐2,4(1H,3H)‐dione → 4‐hydroxy‐1,3,5‐triazin‐2(1H)‐one. Tautomeric equilibrium in 6‐azauracil in water could occur by two contiguous reactions: 1,2,4‐triazine‐3,5(2H,4H)‐dione → 5‐hydroxy‐1,2,4‐triazin‐3(2H)‐one and 5‐hydroxy‐1,2,4‐triazin‐3(2H)‐one → 3‐hydroxy‐1,2,4‐triazin‐5(2H)‐one. The proton transfer investigated reactions in 5‐ and 6‐azauracils involve concerted atomic movement. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
We have carried out extensive studies on the basis set dependence of the calculated specific optical rotation (OR) in molecules at the level of the time–dependent Hartree–Fock and density functional approximations. To reach the limits of the basis set saturation, we have devised an artificial model, the asymmetrically deformed (chiral) methane (CM) molecule. This small system permits to use basis sets which are prohibitively large for real chiral molecules and yet shows all the important features of the basis set dependence of the OR values. The convergence of the OR has been studied with n‐aug‐cc‐pVXZ basis sets of Dunning up to the 6–ζ. In a parallel series of calculations, we have used the recently developed large polarized (LPolX) basis sets. The relatively small LPolX sets have been shown to be competitive to very large n‐aug‐cc‐pVXZ basis sets. The conclusions reached in calculations of OR in CM concerning the usefulness of LPolX basis sets have been further tested on (S)‐methyloxirane and (S)‐fluoro‐oxirane. The smallest set of the LPolX family (LPol–ds) has been found to yield OR values of similar quality as those obtained with much larger Dunning's aug‐cc‐pVQZ basis set. These results have encouraged us to carry out the OR calculations with LPol–ds basis sets for systems as large as β‐pinene and trans‐pinane. In both cases, our calculations have lead to the correct sign of the OR value in these molecules. This makes the relatively small LPol–ds basis sets likely to be useful in OR calculations for large molecules. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

18.
We determine the proton affinity (PA) and gas-phase basicity (GB) of amino acid α-alanine at a chemically accurate level by performing explicitly-correlated CCSD(T)-F12b/aug-cc-pVDZ geometry optimizations and normal mode vibrational frequency calculations as well as CCSD(T)-F12b/aug-cc-pVTZ energy computations at the possible neutral and protonated geometries. Temperature effects at 298.15 K considering translational, rotational, and vibrational enthalpy and entropy corrections are obtained via standard statistical mechanics utilizing the molecular geometries and the harmonic vibrational energy levels. Both the amino nitrogen (N) and the carbonyl oxygen (O) atoms are proven to be potential protonation sites and a systematic conformational search reveals 3 N- and 9 O-protonated conformers in the 0.00–7.88 and 25.43–30.43 kcal/mol energy ranges at 0 K, respectively. The final computed PA and GB values at (0)298.15 K in case of N-protonation are (214.47)216.80 and 207.07 kcal/mol, respectively, whereas the corresponding values for O-protonation are (189.04)190.63 and 182.31 kcal/mol. The results of the benchmark high-level coupled-cluster computations are utilized to assess the accuracy of several lower-level cost-effective methods such as MP2 and density functional theory with various functionals (SOGGA11-X, M06-2X, PBE0, B3LYP, M06, TPSS).  相似文献   

19.
Two series of isostructural C3‐symmetric Ln3 complexes Ln3 ? [BPh4] and Ln3 ? 0.33[Ln(NO3)6] (in which LnIII=Gd and Dy) have been prepared from an amino‐bis(phenol) ligand. X‐ray studies reveal that LnIII ions are connected by one μ2‐phenoxo and two μ3‐methoxo bridges, thus leading to a hexagonal bipyramidal Ln3O5 bridging core in which LnIII ions exhibit a biaugmented trigonal‐prismatic geometry. Magnetic susceptibility studies and ab initio complete active space self‐consistent field (CASSCF) calculations indicate that the magnetic coupling between the DyIII ions, which possess a high axial anisotropy in the ground state, is very weakly antiferromagnetic and mainly dipolar in nature. To reduce the electronic repulsion from the coordinating oxygen atom with the shortest Dy?O distance, the local magnetic moments are oriented almost perpendicular to the Dy3 plane, thus leading to a paramagnetic ground state. CASSCF plus restricted active space state interaction (RASSI) calculations also show that the ground and first excited state of the DyIII ions are separated by approximately 150 and 177 cm?1, for Dy3 ? [BPh4] and Dy3 ? 0.33[Dy(NO3)6], respectively. As expected for these large energy gaps, Dy3 ? [BPh4] and Dy3 ? 0.33[Dy(NO3)6] exhibit, under zero direct‐current (dc) field, thermally activated slow relaxation of the magnetization, which overlap with a quantum tunneling relaxation process. Under an applied Hdc field of 1000 Oe, Dy3 ? [BPh4] exhibits two thermally activated processes with Ueff values of 34.7 and 19.5 cm?1, whereas Dy3 ? 0.33[Dy(NO3)6] shows only one activated process with Ueff=19.5 cm?1.  相似文献   

20.
A high‐level ab initio protocol to compute accurate electron affinities and half‐wave reduction potentials is presented and applied for a series of electron‐acceptor compounds with potential interest in organic electronics and redox flow batteries. The comprehensive comparison between the theoretical and experimental electron affinities not only proves the reliability of the theoretical G3(MP2) approach employed but also calls into question certain experimental measurements, which need to be revised. By using the thermodynamic cycle for the one‐electron attachment reaction A+e?→A?, theoretical estimates for the first half‐wave reduction potential have been computed along the series of electron‐acceptor systems investigated, with maximum deviations from experiment of only 0.2 V. The precise inspection of the terms contributing to the half‐wave reduction potential shows that the difference in the free energy of solvation between the neutral and the anionic species (ΔΔGsolv) plays a crucial role in accurately estimating the electron‐acceptor properties in solution, and thus it cannot be considered constant even in a family of related compounds. This term, which can be used to explain the occasional lack of correlation between electron affinities and reduction potentials, is rationalized by the (de)localization of the additional electron involved in the reduction process along the π‐conjugated chemical structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号